123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- /******************************************************************************
- * Copyright (c) 2024, Tri Dao.
- ******************************************************************************/
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <torch/extension.h>
- #include <vector>
- #include "causal_conv1d.h"
- #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
- #define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
- if (ITYPE == at::ScalarType::Half) { \
- using input_t = at::Half; \
- __VA_ARGS__(); \
- } else if (ITYPE == at::ScalarType::BFloat16) { \
- using input_t = at::BFloat16; \
- __VA_ARGS__(); \
- } else if (ITYPE == at::ScalarType::Float) { \
- using input_t = float; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
- }
- #define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
- if (WTYPE == at::ScalarType::Half) { \
- using weight_t = at::Half; \
- __VA_ARGS__(); \
- } else if (WTYPE == at::ScalarType::BFloat16) { \
- using weight_t = at::BFloat16; \
- __VA_ARGS__(); \
- } else if (WTYPE == at::ScalarType::Float) { \
- using weight_t = float; \
- __VA_ARGS__(); \
- } else { \
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
- }
- template<typename input_t, typename weight_t>
- void causal_conv1d_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
- template <typename input_t, typename weight_t>
- void causal_conv1d_channellast_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
- template<typename input_t, typename weight_t>
- void causal_conv1d_update_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
- void set_conv_params_fwd(ConvParamsBase ¶ms,
- // sizes
- const size_t batch,
- const size_t dim,
- const size_t seqlen,
- const size_t width,
- // device pointers
- const at::Tensor x,
- const at::Tensor weight,
- const at::Tensor out,
- void* bias_ptr,
- bool silu_activation) {
- // Reset the parameters
- memset(¶ms, 0, sizeof(params));
- params.batch = batch;
- params.dim = dim;
- params.seqlen = seqlen;
- params.width = width;
- params.silu_activation = silu_activation;
- // Set the pointers and strides.
- params.x_ptr = x.data_ptr();
- params.weight_ptr = weight.data_ptr();
- params.bias_ptr = bias_ptr;
- params.out_ptr = out.data_ptr();
- // All stride are in elements, not bytes.
- params.x_batch_stride = x.stride(0);
- params.x_c_stride = x.stride(1);
- params.x_l_stride = x.stride(-1);
- params.weight_c_stride = weight.stride(0);
- params.weight_width_stride = weight.stride(1);
- params.out_batch_stride = out.stride(0);
- params.out_c_stride = out.stride(1);
- params.out_l_stride = out.stride(-1);
- }
- at::Tensor
- causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
- const c10::optional<at::Tensor> &bias_,
- const c10::optional<at::Tensor> &seq_idx_,
- const c10::optional<at::Tensor> &initial_states_,
- c10::optional<at::Tensor> &final_states_out_,
- bool silu_activation) {
- auto input_type = x.scalar_type();
- auto weight_type = weight.scalar_type();
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
- TORCH_CHECK(x.is_cuda());
- TORCH_CHECK(weight.is_cuda());
- const auto sizes = x.sizes();
- const int batch_size = sizes[0];
- const int dim = sizes[1];
- const int seqlen = sizes[2];
- const int width = weight.size(-1);
- CHECK_SHAPE(x, batch_size, dim, seqlen);
- CHECK_SHAPE(weight, dim, width);
- TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
- const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
- if (is_channel_last) {
- TORCH_CHECK(dim % 8 == 0, "causal_conv1d only supports channel dimension divisible by 8 for now");
- TORCH_CHECK(x.stride(2) % 8 == 0 and x.stride(0) % 8 == 0, "causal_conv1d with channel last layout requires strides (x.stride(0) and x.stride(2)) to be multiples of 8");
- }
- TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
- if (bias_.has_value()) {
- auto bias = bias_.value();
- TORCH_CHECK(bias.scalar_type() == weight_type);
- TORCH_CHECK(bias.is_cuda());
- TORCH_CHECK(bias.stride(-1) == 1);
- CHECK_SHAPE(bias, dim);
- }
- if (seq_idx_.has_value()) {
- TORCH_CHECK(is_channel_last, "seq_idx is only supported for channel last layout");
- auto seq_idx = seq_idx_.value();
- TORCH_CHECK(seq_idx.scalar_type() == torch::kInt32);
- TORCH_CHECK(seq_idx.is_cuda());
- TORCH_CHECK(seq_idx.is_contiguous());
- CHECK_SHAPE(seq_idx, batch_size, seqlen);
- }
- at::Tensor out = torch::empty_like(x);
- ConvParamsBase params;
- set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
- bias_.has_value() ? bias_.value().data_ptr() : nullptr,
- silu_activation);
- if (seq_idx_.has_value()) {
- params.seq_idx_ptr = seq_idx_.value().data_ptr();
- } else {
- params.seq_idx_ptr = nullptr;
- }
- if (initial_states_.has_value()) {
- TORCH_CHECK(is_channel_last, "initial_states is only supported for channel last layout");
- auto initial_states = initial_states_.value();
- TORCH_CHECK(initial_states.scalar_type() == input_type);
- TORCH_CHECK(initial_states.is_cuda());
- CHECK_SHAPE(initial_states, batch_size, dim, width - 1);
- TORCH_CHECK(initial_states.stride(1) == 1);
- params.initial_states_ptr = initial_states.data_ptr();
- params.initial_states_batch_stride = initial_states.stride(0);
- params.initial_states_c_stride = initial_states.stride(1);
- params.initial_states_l_stride = initial_states.stride(2);
- } else {
- params.initial_states_ptr = nullptr;
- }
- if (final_states_out_.has_value()) {
- TORCH_CHECK(is_channel_last, "final_states is only supported for channel last layout");
- auto final_states = final_states_out_.value();
- TORCH_CHECK(final_states.scalar_type() == input_type);
- TORCH_CHECK(final_states.is_cuda());
- CHECK_SHAPE(final_states, batch_size, dim, width - 1);
- TORCH_CHECK(final_states.stride(1) == 1);
- params.final_states_ptr = final_states.data_ptr();
- params.final_states_batch_stride = final_states.stride(0);
- params.final_states_c_stride = final_states.stride(1);
- params.final_states_l_stride = final_states.stride(2);
- } else {
- params.final_states_ptr = nullptr;
- }
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
- DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_fwd", [&] {
- if (!is_channel_last) {
- causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
- } else {
- causal_conv1d_channellast_fwd_cuda<input_t, weight_t>(params, stream);
- }
- });
- });
- return out;
- }
- at::Tensor
- causal_conv1d_update(const at::Tensor &x,
- const at::Tensor &conv_state,
- const at::Tensor &weight,
- const c10::optional<at::Tensor> &bias_,
- bool silu_activation) {
- auto input_type = x.scalar_type();
- auto weight_type = weight.scalar_type();
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
- TORCH_CHECK(conv_state.scalar_type() == input_type);
- TORCH_CHECK(x.is_cuda());
- TORCH_CHECK(conv_state.is_cuda());
- TORCH_CHECK(weight.is_cuda());
- const auto sizes = x.sizes();
- const int batch_size = sizes[0];
- const int dim = sizes[1];
- const int width = weight.size(-1);
- CHECK_SHAPE(x, batch_size, dim);
- CHECK_SHAPE(conv_state, batch_size, dim, width);
- CHECK_SHAPE(weight, dim, width);
- TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
- if (bias_.has_value()) {
- auto bias = bias_.value();
- TORCH_CHECK(bias.scalar_type() == weight_type);
- TORCH_CHECK(bias.is_cuda());
- TORCH_CHECK(bias.stride(-1) == 1);
- CHECK_SHAPE(bias, dim);
- }
- at::Tensor out = torch::empty_like(x);
- ConvParamsBase params;
- set_conv_params_fwd(params, batch_size, dim, /*seqlen=*/1, width, x, weight, out,
- bias_.has_value() ? bias_.value().data_ptr() : nullptr,
- silu_activation);
- params.conv_state_ptr = conv_state.data_ptr();
- // All stride are in elements, not bytes.
- params.conv_state_batch_stride = conv_state.stride(0);
- params.conv_state_c_stride = conv_state.stride(1);
- params.conv_state_l_stride = conv_state.stride(2);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
- DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_update", [&] {
- causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
- });
- });
- return out;
- }
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
- m.def("causal_conv1d_fwd", &causal_conv1d_fwd, "Causal conv1d forward");
- m.def("causal_conv1d_update", &causal_conv1d_update, "Causal conv1d update");
- }
|