123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- import asyncio
- import os
- from typing import List, Optional
- from transformers import PreTrainedTokenizer
- from aphrodite.common.config import TokenizerPoolConfig
- from aphrodite.lora.request import LoRARequest
- from aphrodite.engine.ray_tools import ray
- from aphrodite.transformers_utils.tokenizer_group.base_tokenizer_group import (
- BaseTokenizerGroup)
- from aphrodite.transformers_utils.tokenizer_group.tokenizer_group import (
- TokenizerGroup)
- from ray.util.scheduling_strategies import NodeAffinitySchedulingStrategy
- class RayTokenizerGroupPool(BaseTokenizerGroup):
- """A Ray-based pool of TokenizerGroups for async tokenization."""
- # Class to use for workers making up the pool.
- _worker_cls = TokenizerGroup
- @classmethod
- def from_config(cls, tokenizer_pool_config: TokenizerPoolConfig,
- **init_kwargs) -> "RayTokenizerGroupPool":
- ray_actor_options = (tokenizer_pool_config.extra_config or {
- "num_cpus": 0
- })
- ray_actor_options.setdefault(
- "scheduling_strategy",
- NodeAffinitySchedulingStrategy(
- node_id=ray.get_runtime_context().get_node_id(), soft=True))
- # Carry over the env vars to the actors.
- # This is necessary for API keys and such.
- ray_actor_options.setdefault("runtime_env", {})
- _carry_over_env_vars_to_runtime_env(ray_actor_options["runtime_env"])
- init_kwargs["num_actors"] = tokenizer_pool_config.pool_size
- init_kwargs["ray_actor_options"] = ray_actor_options
- return cls(**init_kwargs)
- def __init__(self, tokenizer_id: str, enable_lora: bool, max_num_seqs: int,
- max_input_length: Optional[int], num_actors: int,
- ray_actor_options: dict, **tokenizer_config):
- # Store a local copy of the TokenizerGroup for quick access
- # to underlying HF tokenizers.
- self._local_tokenizer_group = self._worker_cls(
- tokenizer_id=tokenizer_id,
- enable_lora=enable_lora,
- max_num_seqs=max_num_seqs,
- max_input_length=max_input_length,
- **tokenizer_config,
- )
- ray_tokenizer_group_cls = ray.remote(
- self._worker_cls).options(**ray_actor_options)
- self.tokenizer_actors = [
- ray_tokenizer_group_cls.remote(tokenizer_id, enable_lora,
- max_num_seqs, max_input_length,
- **tokenizer_config)
- for _ in range(num_actors)
- ]
- self._idle_actors: Optional[asyncio.Queue] = None
- @property
- def pool_size(self) -> int:
- return len(self.tokenizer_actors)
- def ping(self):
- return ray.get(
- [actor.ping.remote() for actor in self.tokenizer_actors])
- def _ensure_queue_initialized(self):
- if self._idle_actors is None:
- self._idle_actors = asyncio.Queue()
- for actor in self.tokenizer_actors:
- self._idle_actors.put_nowait(actor)
- def encode(self,
- prompt: str,
- request_id: Optional[str] = None,
- lora_request: Optional[LoRARequest] = None) -> List[int]:
- """Encode a prompt using the tokenizer group.
- We pick an idle actor and use it to encode the prompt.
- The actor is then put back in the queue for future use.
- This is blocking.
- """
- self._ensure_queue_initialized()
- if self._idle_actors.empty():
- raise RuntimeError("No idle actors available.")
- actor = self._idle_actors.get_nowait()
- try:
- ret = ray.get(
- actor.encode.remote(request_id=request_id,
- prompt=prompt,
- lora_request=lora_request))
- finally:
- # Put the actor back in the queue.
- # This is done in a finally block to ensure that the actor is
- # always put back in the queue, even if an exception/cancellation
- # is raised.
- self._idle_actors.put_nowait(actor)
- return ret
- async def encode_async(
- self,
- prompt: str,
- request_id: Optional[str] = None,
- lora_request: Optional[LoRARequest] = None) -> List[int]:
- """Encode a prompt using the tokenizer group.
- We pick an idle actor and use it to encode the prompt.
- If there are no idle actors, we wait until one becomes
- available.
- The actor is then put back in the queue for future use.
- This is non-blocking.
- """
- self._ensure_queue_initialized()
- actor = await self._idle_actors.get()
- try:
- ret = await actor.encode.remote(request_id=request_id,
- prompt=prompt,
- lora_request=lora_request)
- finally:
- # Put the actor back in the queue.
- # This is done in a finally block to ensure that the actor is
- # always put back in the queue, even if an exception/cancellation
- # is raised.
- self._idle_actors.put_nowait(actor)
- return ret
- def get_max_input_len(self,
- lora_request: Optional[LoRARequest] = None
- ) -> Optional[int]:
- """Get the maximum input length for the LoRA request."""
- return self._local_tokenizer_group.get_max_input_len(lora_request)
- def get_lora_tokenizer(
- self,
- lora_request: Optional[LoRARequest] = None
- ) -> "PreTrainedTokenizer":
- return self._local_tokenizer_group.get_lora_tokenizer(lora_request)
- async def get_lora_tokenizer_async(
- self,
- lora_request: Optional[LoRARequest] = None
- ) -> "PreTrainedTokenizer":
- return await self._local_tokenizer_group.get_lora_tokenizer_async(
- lora_request)
- def _carry_over_env_vars_to_runtime_env(runtime_env: dict) -> None:
- """Copy over all current process environment variables to the runtime_env.
- The variables in runtime_env will take precedence over the current process
- environment variables.
- runtime_env will be modified in place."""
- env_vars = os.environ.copy()
- runtime_env.setdefault("env_vars", {})
- env_vars.update(runtime_env["env_vars"])
- runtime_env["env_vars"] = env_vars
|