123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481 |
- import asyncio
- import enum
- import gc
- import os
- import socket
- import subprocess
- import uuid
- from collections import OrderedDict, defaultdict
- from functools import lru_cache, partial
- from platform import uname
- from typing import (Any, AsyncIterator, Awaitable, Callable, Dict, Generic,
- Hashable, List, Optional, Tuple, TypeVar, Union)
- import psutil
- import torch
- from loguru import logger
- from packaging.version import Version, parse
- T = TypeVar("T")
- STR_DTYPE_TO_TORCH_DTYPE = {
- "half": torch.half,
- "bfloat16": torch.bfloat16,
- "float": torch.float,
- "fp8": torch.uint8,
- }
- class Device(enum.Enum):
- GPU = enum.auto()
- CPU = enum.auto()
- class Counter:
- def __init__(self, start: int = 0) -> None:
- self.counter = start
- def __next__(self) -> int:
- i = self.counter
- self.counter += 1
- return i
- def reset(self) -> None:
- self.counter = 0
- class LRUCache(Generic[T]):
- def __init__(self, capacity: int):
- self.cache = OrderedDict[Hashable, T]()
- self.capacity = capacity
- def __contains__(self, key: Hashable) -> bool:
- return key in self.cache
- def __len__(self) -> int:
- return len(self.cache)
- def __getitem__(self, key: Hashable) -> T:
- return self.get(key)
- def __setitem__(self, key: Hashable, value: T) -> None:
- self.put(key, value)
- def __delitem__(self, key: Hashable) -> None:
- self.pop(key)
- def touch(self, key: Hashable) -> None:
- self.cache.move_to_end(key)
- def get(self,
- key: Hashable,
- default_value: Optional[T] = None) -> Optional[T]:
- if key in self.cache:
- value = self.cache[key]
- self.cache.move_to_end(key)
- else:
- value = default_value
- return value
- def put(self, key: Hashable, value: T) -> None:
- self.cache[key] = value
- self.cache.move_to_end(key)
- self._remove_old_if_needed()
- def _on_remove(self, key: Hashable, value: T):
- pass
- def remove_oldest(self):
- if not self.cache:
- return
- key, value = self.cache.popitem(last=False)
- self._on_remove(key, value)
- def _remove_old_if_needed(self) -> None:
- while len(self.cache) > self.capacity:
- self.remove_oldest()
- def pop(self, key: Hashable, default_value: Optional[Any] = None) -> T:
- run_on_remove = key in self.cache
- value = self.cache.pop(key, default_value)
- if run_on_remove:
- self._on_remove(key, value)
- return value
- def clear(self):
- while len(self.cache) > 0:
- self.remove_oldest()
- self.cache.clear()
- def is_hip() -> bool:
- return torch.version.hip is not None
- @lru_cache(maxsize=None)
- def is_cpu() -> bool:
- from importlib.metadata import PackageNotFoundError, version
- try:
- return "cpu" in version("aphrodite-engine")
- except PackageNotFoundError:
- return False
- @lru_cache(maxsize=None)
- def is_neuron() -> bool:
- try:
- import transformers_neuronx
- except ImportError:
- transformers_neuronx = None
- return transformers_neuronx is not None
- @lru_cache(maxsize=None)
- def get_max_shared_memory_bytes(gpu: int = 0) -> int:
- """Returns the maximum shared memory per thread block in bytes."""
- # NOTE: This import statement should be executed lazily since
- # the Neuron-X backend does not have the `cuda_utils` module.
- from aphrodite._C import cuda_utils
- max_shared_mem = (
- cuda_utils.get_max_shared_memory_per_block_device_attribute(gpu))
- # value 0 will cause MAX_SEQ_LEN become negative and test_attention.py
- # will fail
- assert max_shared_mem > 0, "max_shared_mem can not be zero"
- return int(max_shared_mem)
- def get_cpu_memory() -> int:
- """Returns the total CPU memory of the node in bytes."""
- return psutil.virtual_memory().total
- def random_uuid() -> str:
- return str(uuid.uuid4().hex)
- @lru_cache(maxsize=None)
- def in_wsl() -> bool:
- # Reference: https://github.com/microsoft/WSL/issues/4071
- return "microsoft" in " ".join(uname()).lower()
- def make_async(func: Callable[..., T]) -> Callable[..., Awaitable[T]]:
- """Take a blocking function, and run it on in an executor thread.
- This function prevents the blocking function from blocking the
- asyncio event loop.
- The code in this function needs to be thread safe.
- """
- def _async_wrapper(*args, **kwargs) -> asyncio.Future:
- loop = asyncio.get_event_loop()
- p_func = partial(func, *args, **kwargs)
- return loop.run_in_executor(executor=None, func=p_func)
- return _async_wrapper
- def merge_async_iterators(
- *iterators: AsyncIterator[T]) -> AsyncIterator[Tuple[int, T]]:
- """Merge multiple asynchronous iterators into a single iterator.
- This method handle the case where some iterators finish before others.
- When it yields, it yields a tuple (i, item) where i is the index of the
- iterator that yields the item.
- """
- queue: asyncio.Queue[Union[Tuple[int, T], Exception]] = asyncio.Queue()
- finished = [False] * len(iterators)
- async def producer(i: int, iterator: AsyncIterator[T]):
- try:
- async for item in iterator:
- await queue.put((i, item))
- except Exception as e:
- await queue.put(e)
- finished[i] = True
- _tasks = [
- asyncio.create_task(producer(i, iterator))
- for i, iterator in enumerate(iterators)
- ]
- async def consumer():
- while not all(finished) or not queue.empty():
- item = await queue.get()
- if isinstance(item, Exception):
- raise item
- yield item
- await asyncio.gather(*_tasks)
- return consumer()
- def get_ip() -> str:
- # try ipv4
- s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
- try:
- s.connect(("8.8.8.8", 80)) # Doesn't need to be reachable
- return s.getsockname()[0]
- except OSError:
- # try ipv6
- s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
- s.connect(("dns.google", 80))
- return s.getsockname()[0]
- def get_distributed_init_method(ip: str, port: int) -> str:
- # Brackets are not permitted in ipv4 addresses,
- # see https://github.com/python/cpython/issues/103848
- return f"tcp://[{ip}]:{port}" if ":" in ip else f"tcp://{ip}:{port}"
- def get_open_port() -> int:
- # try ipv4
- try:
- with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
- s.bind(("", 0))
- return s.getsockname()[1]
- except OSError:
- # try ipv6
- with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
- s.bind(("", 0))
- return s.getsockname()[1]
- def set_cuda_visible_devices(device_ids: List[int]) -> None:
- os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, device_ids))
- def chunk_list(lst, chunk_size):
- """Yield successive chunk_size chunks from lst."""
- return [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)]
- def cdiv(a: int, b: int) -> int:
- """Ceiling division."""
- return -(a // -b)
- @lru_cache(maxsize=None)
- def get_nvcc_cuda_version() -> Optional[Version]:
- cuda_home = os.environ.get('CUDA_HOME')
- if not cuda_home:
- cuda_home = '/usr/local/cuda'
- if os.path.isfile(cuda_home + '/bin/nvcc'):
- logger.info(
- f'CUDA_HOME is not found in the environment. Using {cuda_home} '
- 'as CUDA_HOME.')
- else:
- logger.warning(
- f'Not found nvcc in {cuda_home}. Skip cuda version check!')
- return None
- nvcc_output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"],
- universal_newlines=True)
- output = nvcc_output.split()
- release_idx = output.index("release") + 1
- nvcc_cuda_version = parse(output[release_idx].split(",")[0])
- return nvcc_cuda_version
- def _generate_random_fp8(
- tensor: torch.tensor,
- low: float,
- high: float,
- ) -> None:
- # NOTE: Due to NaN and Inf representation for fp8 data type,
- # we may get Inf or NaN if we directly use torch.randint
- # to generate random data for fp8 data.
- # For example, s.11111.00 in fp8e5m2 format represents Inf.
- # | E4M3 | E5M2
- #-----|-------------|-------------------
- # Inf | N/A | s.11111.00
- # NaN | s.1111.111 | s.11111.{01,10,11}
- from aphrodite._C import cache_ops
- tensor_tmp = torch.empty_like(tensor, dtype=torch.float16)
- tensor_tmp.uniform_(low, high)
- cache_ops.convert_fp8(tensor_tmp, tensor)
- del tensor_tmp
- def create_kv_caches_with_random(
- num_blocks: int,
- block_size: int,
- num_layers: int,
- num_heads: int,
- head_size: int,
- cache_dtype: Optional[Union[str, torch.dtype]],
- model_dtype: Optional[Union[str, torch.dtype]] = None,
- seed: Optional[int] = 0,
- device: Optional[str] = "cuda",
- ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
- torch.random.manual_seed(seed)
- if torch.cuda.is_available():
- torch.cuda.manual_seed(seed)
- if isinstance(cache_dtype, str):
- if cache_dtype == "auto":
- if isinstance(model_dtype, str):
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype]
- elif isinstance(model_dtype, torch.dtype):
- torch_dtype = model_dtype
- else:
- raise ValueError(f"Invalid model dtype: {model_dtype}")
- elif cache_dtype in ["half", "bfloat16", "float"]:
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_dtype]
- elif cache_dtype == "fp8":
- torch_dtype = torch.uint8
- else:
- raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
- elif isinstance(cache_dtype, torch.dtype):
- torch_dtype = cache_dtype
- else:
- raise ValueError(f"Invalid kv cache dtype: {cache_dtype}")
- scale = head_size**-0.5
- x = 16 // torch.tensor([], dtype=torch_dtype).element_size()
- key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
- key_caches = []
- for _ in range(num_layers):
- key_cache = torch.empty(size=key_cache_shape,
- dtype=torch_dtype,
- device=device)
- if cache_dtype in ["auto", "half", "bfloat16", "float"]:
- key_cache.uniform_(-scale, scale)
- elif cache_dtype == 'fp8':
- _generate_random_fp8(key_cache, -scale, scale)
- else:
- raise ValueError(
- f"Does not support key cache of type {cache_dtype}")
- key_caches.append(key_cache)
- value_cache_shape = (num_blocks, num_heads, head_size, block_size)
- value_caches = []
- for _ in range(num_layers):
- value_cache = torch.empty(size=value_cache_shape,
- dtype=torch_dtype,
- device=device)
- if cache_dtype in ["auto", "half", "bfloat16", "float"]:
- value_cache.uniform_(-scale, scale)
- elif cache_dtype == 'fp8':
- _generate_random_fp8(value_cache, -scale, scale)
- else:
- raise ValueError(
- f"Does not support value cache of type {cache_dtype}")
- value_caches.append(value_cache)
- return key_caches, value_caches
- @lru_cache
- def print_warning_once(msg: str) -> None:
- logger.warning(msg)
- @lru_cache(maxsize=None)
- def is_pin_memory_available() -> bool:
- if in_wsl():
- # Pinning memory in WSL is not supported.
- # https://docs.nvidia.com/cuda/wsl-user-guide/index.html#known-limitations-for-linux-cuda-applications
- print_warning_once("Using 'pin_memory=False' as WSL is detected. "
- "This may slow down the performance.")
- return False
- elif is_neuron():
- print_warning_once("Pin memory is not supported on Neuron.")
- return False
- elif is_cpu():
- return False
- return True
- class CudaMemoryProfiler:
- def __init__(self, device=None):
- self.device = device
- def current_memory_usage(self) -> float:
- # Return the memory usage in bytes.
- torch.cuda.reset_peak_memory_stats(self.device)
- mem = torch.cuda.max_memory_allocated(self.device)
- return mem
- def __enter__(self):
- self.initial_memory = self.current_memory_usage()
- # This allows us to call methods of the context manager if needed
- return self
- def __exit__(self, exc_type, exc_val, exc_tb):
- self.final_memory = self.current_memory_usage()
- self.consumed_memory = self.final_memory - self.initial_memory
- # Force garbage collection
- gc.collect()
- def str_to_int_tuple(s: str) -> Tuple[int]:
- """Convert a string to a tuple of integers."""
- try:
- return tuple(map(int, s.split(",")))
- except ValueError as e:
- raise ValueError(
- "String must be a series of integers separated by commas "
- f"(e.g., 1, 2, 3). Given input: {s}") from e
- def pad_to_max_length(x: List[int], max_len: int, pad: int) -> List[int]:
- assert len(x) <= max_len
- return x + [pad] * (max_len - len(x))
- def make_tensor_with_pad(
- x: List[List[int]],
- max_len: int,
- pad: int,
- dtype: torch.dtype,
- device: Optional[Union[str, torch.device]],
- ) -> torch.Tensor:
- """Make a padded tensor of a 2D inputs.
- The padding is applied to the end of each inner list until it reaches
- `max_len`.
- """
- padded_x = [pad_to_max_length(x_i, max_len, pad) for x_i in x]
- return torch.tensor(padded_x, dtype=dtype, device=device)
- def async_tensor_h2d(
- data: list,
- dtype: torch.dtype,
- target_device: Union[str, torch.device],
- pin_memory: bool,
- ) -> torch.Tensor:
- """Asynchronously create a tensor and copy it from host to device."""
- t = torch.tensor(data, dtype=dtype, pin_memory=pin_memory, device="cpu")
- return t.to(device=target_device, non_blocking=True)
- def maybe_expand_dim(tensor: torch.Tensor,
- target_dims: int,
- size: int = 1) -> torch.Tensor:
- """Expand the tensor to the target_dims."""
- if tensor.ndim < target_dims:
- tensor = tensor.view(-1, *([size] * (target_dims - tensor.ndim)))
- return tensor
- def merge_dicts(dict1: Dict[Any, List[Any]],
- dict2: Dict[Any, List[Any]]) -> Dict[Any, List[Any]]:
- """Merge 2 dicts that have key -> List of items.
-
- When a key conflicts, the values in dict1 is prioritized.
- """
- merged_dict = defaultdict(list)
- for key, value in dict1.items():
- merged_dict[key].extend(value)
- for key, value in dict2.items():
- merged_dict[key].extend(value)
- return dict(merged_dict)
|