AlpinDale 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
..
__init__.py ec17b6c4d0 fix: Phi3.5 Mini and MoE LoRA inference (#1070) 2 mesi fa
arctic.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
baichuan.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
bart.py a985143768 core: add cuda graph support for encoder-decoder models (#1051) 2 mesi fa
blip.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
blip2.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
bloom.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
chameleon.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
chatglm.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
clip.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
commandr.py 135dfd648b fix: LoRA support for Cohere and Jamba models (#1004) 2 mesi fa
dbrx.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
decilm.py 9022c6d869 remove progress_bar imports 4 mesi fa
deepseek.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
deepseek_v2.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
eagle.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
exaone.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
falcon.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
fuyu.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
gemma.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
gemma2.py b33cf04386 quants: add bitsandbytes support for gemma2 model (#1026) 2 mesi fa
gpt2.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
gpt_bigcode.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
gpt_j.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
gpt_neox.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
granite.py 11f49b5341 fix: granite logit scale in logit computation (#1054) 2 mesi fa
idefics2_vision_model.py f1d0b77c92 [0.6.0] Release Candidate (#481) 6 mesi fa
interfaces.py 0b8b407b6d feat: support profiling with multiple multi-modal inputs per prompt (#712) 6 mesi fa
intern_vit.py f56d6b396a vlm: fallback to SDPA for ViT models on CPU backend (#982) 2 mesi fa
internlm2.py 7632f91429 fix: InternLM2 model with Tensor Parallel (#980) 2 mesi fa
internvl.py 41ceb754a6 vlm: fix internvl2 inference with various num_patches (#1030) 2 mesi fa
jais.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
jamba.py 135dfd648b fix: LoRA support for Cohere and Jamba models (#1004) 2 mesi fa
llama.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
llama_embedding.py 9022c6d869 remove progress_bar imports 4 mesi fa
llava.py 4d14bd1fe5 vlm: add multi-input support for LLaVA and InternVL models (#1002) 2 mesi fa
llava_next.py 766ea79b89 vlm: fix feature size calculation for llava-next models (#1079) 2 mesi fa
llava_next_video.py be59e30139 vlm: add support for video modality + llava next video (#1014) 2 mesi fa
mamba.py 3bb0f07461 chore: rename `task_handler` to `worker` (#985) 2 mesi fa
mamba_cache.py a113309876 kernel: add meta functions for ops to prevent graph breaks (#1019) 2 mesi fa
medusa.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
minicpm.py ce7b602f03 model: add support for MiniCPM-3 (#1044) 2 mesi fa
minicpm3.py ce7b602f03 model: add support for MiniCPM-3 (#1044) 2 mesi fa
minicpmv.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
mixtral.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
mixtral_quant.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
mlp_speculator.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
molmo.py acc0c727c8 vlm: add support for molmo vision model (#1069) 2 mesi fa
mpt.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
na_vit.py 9f3e7c86e2 feat: add fused Marlin MoE kernel (#934) 2 mesi fa
nemotron.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
olmo.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
olmoe.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
opt.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
orion.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
paligemma.py 46d577f019 vlm: fix siglip layernorm and paligemma weight loading (#991) 2 mesi fa
persimmon.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
phi.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
phi3.py ec17b6c4d0 fix: Phi3.5 Mini and MoE LoRA inference (#1070) 2 mesi fa
phi3_small.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
phi3v.py 4d14bd1fe5 vlm: add multi-input support for LLaVA and InternVL models (#1002) 2 mesi fa
phimoe.py ec17b6c4d0 fix: Phi3.5 Mini and MoE LoRA inference (#1070) 2 mesi fa
pixtral.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
qwen.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
qwen2.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
qwen2_moe.py 5224389dae chore: skip loading extra bias for qwen2 moe GPTQ (#1011) 2 mesi fa
qwen2_vl.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
siglip.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
solar.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
stablelm.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
starcoder2.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa
ultravox.py 651678d2df VLM: use `SequenceData.from_token_counts` to create dummy data (#1093) 1 mese fa
utils.py a8bdd488b9 distributed: support pipeline parallelism for internvl and internlm2 (#965) 2 mesi fa
xverse.py 0dfa6b60ec core: support logprobs with multi-step scheduling (#963) 2 mesi fa