123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 |
- # ruff: noqa
- from __future__ import annotations
- from typing import Sequence
- from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
- class TensorNameMap:
- mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
- # Token embeddings
- MODEL_TENSOR.TOKEN_EMBD: (
- "gpt_neox.embed_in", # gptneox
- "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx
- "transformer.word_embeddings", # falcon
- "word_embeddings", # bloom
- "model.embed_tokens", # llama-hf
- "tok_embeddings", # llama-pth
- "embeddings.word_embeddings", # bert nomic-bert
- "language_model.embedding.word_embeddings", # persimmon
- "wte", # gpt2
- "transformer.embd.wte", # phi2
- "model.tok_embeddings", # internlm2
- "model.embedding", # mamba-qbert
- "backbone.embedding", # mamba
- "backbone.embeddings", # mamba-hf
- "transformer.in_out_embed", # Grok
- ),
- # Token type embeddings
- MODEL_TENSOR.TOKEN_TYPES: (
- "embeddings.token_type_embeddings", # bert nomic-bert
- ),
- # Normalization of token embeddings
- MODEL_TENSOR.TOKEN_EMBD_NORM: (
- "word_embeddings_layernorm", # bloom
- "embeddings.LayerNorm", # bert
- "emb_ln", # nomic-bert
- ),
- # Position embeddings
- MODEL_TENSOR.POS_EMBD: (
- "transformer.wpe", # gpt2
- "embeddings.position_embeddings", # bert
- "wpe", # gpt2
- ),
- # Output
- MODEL_TENSOR.OUTPUT: (
- "embed_out", # gptneox
- "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx
- "output", # llama-pth bloom internlm2
- "word_embeddings_for_head", # persimmon
- "lm_head.linear", # phi2
- ),
- # Output norm
- MODEL_TENSOR.OUTPUT_NORM: (
- "gpt_neox.final_layer_norm", # gptneox
- "transformer.ln_f", # gpt2 gpt-j falcon
- "model.norm", # llama-hf baichuan internlm2
- "norm", # llama-pth
- "transformer.norm_f", # mpt dbrx
- "ln_f", # refact bloom qwen gpt2
- "language_model.encoder.final_layernorm", # persimmon
- "model.final_layernorm", # persimmon
- "lm_head.ln", # phi2
- "model.norm_f", # mamba-qbert
- "backbone.norm_f", # mamba
- "transformer.rms_norm", # Grok
- ),
- # Rope frequencies
- MODEL_TENSOR.ROPE_FREQS: (
- "rope.freqs", # llama-pth
- ),
- }
- block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
- # Attention norm
- MODEL_TENSOR.ATTN_NORM: (
- "gpt_neox.layers.{bid}.input_layernorm", # gptneox
- "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
- "transformer.blocks.{bid}.norm_1", # mpt
- "transformer.h.{bid}.input_layernorm", # falcon7b
- "h.{bid}.input_layernorm", # bloom
- "transformer.h.{bid}.ln_mlp", # falcon40b
- "model.layers.{bid}.input_layernorm", # llama-hf
- "layers.{bid}.attention_norm", # llama-pth
- "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
- "model.layers.{bid}.ln1", # yi
- "h.{bid}.ln_1", # gpt2
- "transformer.h.{bid}.ln", # phi2
- "model.layers.layers.{bid}.norm", # plamo
- "model.layers.{bid}.attention_norm", # internlm2
- "model.layers.{bid}.norm", # mamba-qbert
- "backbone.layers.{bid}.norm", # mamba
- "transformer.decoder_layer.{bid}.rms_norm", # Grok
- "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
- ),
- # Attention norm 2
- MODEL_TENSOR.ATTN_NORM_2: (
- "transformer.h.{bid}.ln_attn", # falcon40b
- ),
- # Attention query-key-value
- MODEL_TENSOR.ATTN_QKV: (
- "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
- "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
- "transformer.blocks.{bid}.attn.Wqkv", # mpt
- "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
- "transformer.h.{bid}.self_attention.query_key_value", # falcon
- "h.{bid}.self_attention.query_key_value", # bloom
- "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
- "model.layers.{bid}.self_attn.query_key_value", # persimmon
- "h.{bid}.attn.c_attn", # gpt2
- "transformer.h.{bid}.mixer.Wqkv", # phi2
- "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
- ),
- # Attention query
- MODEL_TENSOR.ATTN_Q: (
- "model.layers.{bid}.self_attn.q_proj", # llama-hf
- "layers.{bid}.attention.wq", # llama-pth
- "encoder.layer.{bid}.attention.self.query", # bert
- "transformer.h.{bid}.attn.q_proj", # gpt-j
- "model.layers.layers.{bid}.self_attn.q_proj", # plamo
- "model.layers.{bid}.attention.wq", # internlm2
- "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
- ),
- # Attention key
- MODEL_TENSOR.ATTN_K: (
- "model.layers.{bid}.self_attn.k_proj", # llama-hf
- "layers.{bid}.attention.wk", # llama-pth
- "encoder.layer.{bid}.attention.self.key", # bert
- "transformer.h.{bid}.attn.k_proj", # gpt-j
- "model.layers.layers.{bid}.self_attn.k_proj", # plamo
- "model.layers.{bid}.attention.wk", # internlm2
- "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
- ),
- # Attention value
- MODEL_TENSOR.ATTN_V: (
- "model.layers.{bid}.self_attn.v_proj", # llama-hf
- "layers.{bid}.attention.wv", # llama-pth
- "encoder.layer.{bid}.attention.self.value", # bert
- "transformer.h.{bid}.attn.v_proj", # gpt-j
- "model.layers.layers.{bid}.self_attn.v_proj", # plamo
- "model.layers.{bid}.attention.wv", # internlm2
- "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
- ),
- # Attention output
- MODEL_TENSOR.ATTN_OUT: (
- "gpt_neox.layers.{bid}.attention.dense", # gptneox
- "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
- "transformer.blocks.{bid}.attn.out_proj", # mpt
- "transformer.h.{bid}.self_attention.dense", # falcon
- "h.{bid}.self_attention.dense", # bloom
- "model.layers.{bid}.self_attn.o_proj", # llama-hf
- "layers.{bid}.attention.wo", # llama-pth
- "encoder.layer.{bid}.attention.output.dense", # bert
- "transformer.h.{bid}.attn.out_proj", # gpt-j
- "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
- "model.layers.{bid}.self_attn.dense", # persimmon
- "h.{bid}.attn.c_proj", # gpt2
- "transformer.h.{bid}.mixer.out_proj", # phi2
- "model.layers.layers.{bid}.self_attn.o_proj", # plamo
- "model.layers.{bid}.attention.wo", # internlm2
- "encoder.layers.{bid}.attn.out_proj", # nomic-bert
- "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
- "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
- ),
- # Attention output norm
- MODEL_TENSOR.ATTN_OUT_NORM: (
- "encoder.layer.{bid}.attention.output.LayerNorm", # bert
- "encoder.layers.{bid}.norm1", # nomic-bert
- "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
- "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
- ),
- # Rotary embeddings
- MODEL_TENSOR.ATTN_ROT_EMBD: (
- "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
- "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
- "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
- "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
- ),
- # Feed-forward norm
- MODEL_TENSOR.FFN_NORM: (
- "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
- "transformer.h.{bid}.ln_2", # gpt2 refact qwen
- "h.{bid}.post_attention_layernorm", # bloom
- "transformer.blocks.{bid}.norm_2", # mpt
- "model.layers.{bid}.post_attention_layernorm", # llama-hf
- "layers.{bid}.ffn_norm", # llama-pth
- "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
- "model.layers.{bid}.ln2", # yi
- "h.{bid}.ln_2", # gpt2
- "model.layers.{bid}.ffn_norm", # internlm2
- "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
- ),
- MODEL_TENSOR.FFN_GATE_INP: (
- "layers.{bid}.feed_forward.gate", # mixtral
- "model.layers.{bid}.block_sparse_moe.gate", # mixtral
- "transformer.decoder_layer.{bid}.router", # Grok
- "transformer.blocks.{bid}.ffn.router.layer", # dbrx
- ),
- # Feed-forward up
- MODEL_TENSOR.FFN_UP: (
- "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
- "transformer.h.{bid}.mlp.c_fc", # gpt2
- "transformer.blocks.{bid}.ffn.up_proj", # mpt
- "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
- "h.{bid}.mlp.dense_h_to_4h", # bloom
- "model.layers.{bid}.mlp.up_proj", # llama-hf refact
- "layers.{bid}.feed_forward.w3", # llama-pth
- "encoder.layer.{bid}.intermediate.dense", # bert
- "transformer.h.{bid}.mlp.fc_in", # gpt-j
- "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
- "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
- "transformer.h.{bid}.mlp.w1", # qwen
- "h.{bid}.mlp.c_fc", # gpt2
- "transformer.h.{bid}.mlp.fc1", # phi2
- "model.layers.{bid}.mlp.fc1", # phi2
- "model.layers.layers.{bid}.mlp.up_proj", # plamo
- "model.layers.{bid}.feed_forward.w3", # internlm2
- "encoder.layers.{bid}.mlp.fc11", # nomic-bert
- "model.layers.{bid}.mlp.c_fc", # starcoder2
- ),
- MODEL_TENSOR.FFN_UP_EXP: (
- "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
- "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
- "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
- ),
- # AWQ-activation gate
- MODEL_TENSOR.FFN_ACT: (
- "transformer.blocks.{bid}.ffn.act", # mpt
- ),
- # Feed-forward gate
- MODEL_TENSOR.FFN_GATE: (
- "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
- "layers.{bid}.feed_forward.w1", # llama-pth
- "transformer.h.{bid}.mlp.w2", # qwen
- "model.layers.layers.{bid}.mlp.gate_proj", # plamo
- "model.layers.{bid}.feed_forward.w1", # internlm2
- "encoder.layers.{bid}.mlp.fc12", # nomic-bert
- ),
- MODEL_TENSOR.FFN_GATE_EXP: (
- "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
- "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
- "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
- ),
- # Feed-forward down
- MODEL_TENSOR.FFN_DOWN: (
- "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
- "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
- "transformer.blocks.{bid}.ffn.down_proj", # mpt
- "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
- "h.{bid}.mlp.dense_4h_to_h", # bloom
- "model.layers.{bid}.mlp.down_proj", # llama-hf
- "layers.{bid}.feed_forward.w2", # llama-pth
- "encoder.layer.{bid}.output.dense", # bert
- "transformer.h.{bid}.mlp.fc_out", # gpt-j
- "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
- "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
- "h.{bid}.mlp.c_proj", # gpt2
- "transformer.h.{bid}.mlp.fc2", # phi2
- "model.layers.{bid}.mlp.fc2", # phi2
- "model.layers.layers.{bid}.mlp.down_proj", # plamo
- "model.layers.{bid}.feed_forward.w2", # internlm2
- "encoder.layers.{bid}.mlp.fc2", # nomic-bert
- "model.layers.{bid}.mlp.c_proj", # starcoder2
- ),
- MODEL_TENSOR.FFN_DOWN_EXP: (
- "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
- "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
- "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
- ),
- MODEL_TENSOR.ATTN_Q_NORM: (
- "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
- "model.layers.{bid}.self_attn.q_layernorm", # persimmon
- "model.layers.{bid}.self_attn.q_norm", # cohere
- "transformer.blocks.{bid}.attn.q_ln", # sea-lion
- ),
- MODEL_TENSOR.ATTN_K_NORM: (
- "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
- "model.layers.{bid}.self_attn.k_layernorm", # persimmon
- "model.layers.{bid}.self_attn.k_norm", # cohere
- "transformer.blocks.{bid}.attn.k_ln", # sea-lion
- ),
- MODEL_TENSOR.ROPE_FREQS: (
- "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
- ),
- MODEL_TENSOR.LAYER_OUT_NORM: (
- "encoder.layer.{bid}.output.LayerNorm", # bert
- "encoder.layers.{bid}.norm2", # nomic-bert
- "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
- ),
- MODEL_TENSOR.SSM_IN: (
- "model.layers.{bid}.in_proj",
- "backbone.layers.{bid}.mixer.in_proj",
- ),
- MODEL_TENSOR.SSM_CONV1D: (
- "model.layers.{bid}.conv1d",
- "backbone.layers.{bid}.mixer.conv1d",
- ),
- MODEL_TENSOR.SSM_X: (
- "model.layers.{bid}.x_proj",
- "backbone.layers.{bid}.mixer.x_proj",
- ),
- MODEL_TENSOR.SSM_DT: (
- "model.layers.{bid}.dt_proj",
- "backbone.layers.{bid}.mixer.dt_proj",
- ),
- MODEL_TENSOR.SSM_A: (
- "model.layers.{bid}.A_log",
- "backbone.layers.{bid}.mixer.A_log",
- ),
- MODEL_TENSOR.SSM_D: (
- "model.layers.{bid}.D",
- "backbone.layers.{bid}.mixer.D",
- ),
- MODEL_TENSOR.SSM_OUT: (
- "model.layers.{bid}.out_proj",
- "backbone.layers.{bid}.mixer.out_proj",
- ),
- }
- mapping: dict[str, tuple[MODEL_TENSOR, str]]
- def __init__(self, arch: MODEL_ARCH, n_blocks: int):
- self.mapping = {}
- for tensor, keys in self.mappings_cfg.items():
- if tensor not in MODEL_TENSORS[arch]:
- continue
- tensor_name = TENSOR_NAMES[tensor]
- self.mapping[tensor_name] = (tensor, tensor_name)
- for key in keys:
- self.mapping[key] = (tensor, tensor_name)
- for bid in range(n_blocks):
- for tensor, keys in self.block_mappings_cfg.items():
- if tensor not in MODEL_TENSORS[arch]:
- continue
- # TODO: make this configurable
- n_experts = 8
- for xid in range(n_experts):
- tensor_name = TENSOR_NAMES[tensor].format(bid=bid, xid=xid)
- self.mapping[tensor_name] = (tensor, tensor_name)
- for key in keys:
- key = key.format(bid=bid, xid=xid)
- self.mapping[key] = (tensor, tensor_name)
- def get_type_and_name(
- self, key: str, try_suffixes: Sequence[str] = ()
- ) -> tuple[MODEL_TENSOR, str] | None:
- result = self.mapping.get(key)
- if result is not None:
- return result
- for suffix in try_suffixes:
- if key.endswith(suffix):
- result = self.mapping.get(key[:-len(suffix)])
- if result is not None:
- return result[0], result[1] + suffix
- return None
- def get_name(self, key: str,
- try_suffixes: Sequence[str] = ()) -> str | None:
- result = self.get_type_and_name(key, try_suffixes=try_suffixes)
- if result is None:
- return None
- return result[1]
- def get_type(
- self, key: str,
- try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
- result = self.get_type_and_name(key, try_suffixes=try_suffixes)
- if result is None:
- return None
- return result[0]
- def __getitem__(self, key: str) -> str:
- try:
- return self.mapping[key][1]
- except KeyError:
- raise KeyError(key)
- def __contains__(self, key: str) -> bool:
- return key in self.mapping
- def __repr__(self) -> str:
- return repr(self.mapping)
- def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
- return TensorNameMap(arch, n_blocks)
|