123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 |
- from typing import List, Optional, Tuple
- import torch
- from torch import nn
- from transformers import PretrainedConfig
- from aphrodite.modeling.metadata import InputMetadata
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.attention import PagedAttention
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- RowParallelLinear,
- QKVParallelLinear,
- LinearMethodBase)
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- VocabParallelEmbedding, ParallelLMHead)
- from aphrodite.modeling.megatron.parallel_state import (
- get_tensor_model_parallel_world_size)
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.modeling.hf_downloader import (default_weight_loader,
- hf_model_weights_iterator)
- from aphrodite.common.sequence import SamplerOutput
- KVCache = Tuple[torch.Tensor, torch.Tensor]
- class PhiEmbedding(nn.Module):
- def __init__(self, config: PretrainedConfig):
- super().__init__()
- self.wte = VocabParallelEmbedding(
- config.vocab_size,
- config.hidden_size,
- )
- def forward(self, input_ids: torch.LongTensor):
- return self.wte(input_ids)
- class PhiAttention(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- linear_method: Optional[LinearMethodBase] = None):
- super().__init__()
- self.total_num_heads = config.num_attention_heads
- self.hidden_size = config.hidden_size
- self.head_size = self.hidden_size // self.total_num_heads
- tensor_model_parallel_world_size = (
- get_tensor_model_parallel_world_size())
- assert self.total_num_heads % tensor_model_parallel_world_size == 0
- self.num_heads = (self.total_num_heads //
- tensor_model_parallel_world_size)
- # pylint: disable=C0103
- self.Wqkv = QKVParallelLinear(
- self.hidden_size,
- self.head_size,
- self.total_num_heads,
- linear_method=linear_method,
- )
- self.qkv_proj = QKVParallelLinear(
- config.hidden_size,
- self.head_size,
- self.total_num_heads,
- bias=False,
- linear_method=linear_method,
- )
- self.out_proj = RowParallelLinear(
- self.hidden_size,
- self.hidden_size,
- linear_method=linear_method,
- )
- scaling = self.head_size**-0.5
- rotary_dim = config.rotary_dim
- assert rotary_dim % 2 == 0
- # pylint: disable=C0301
- # Refer to:
- # https://huggingface.co/microsoft/phi-1_5/blob/d212a789620c380ff32ca1d1ee9943a777360987/modeling_phi.py#L518
- rope_theta = 10000
- max_position_embeddings = getattr(config, "n_positions", 2048)
- self.rotary_emb = get_rope(
- self.head_size,
- rotary_dim=rotary_dim,
- max_position=max_position_embeddings,
- base=rope_theta,
- )
- self.attn = PagedAttention(self.num_heads, self.head_size, scaling)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: KVCache,
- input_metadata: InputMetadata,
- cache_event: Optional[torch.cuda.Event],
- ) -> torch.Tensor:
- qkv, _ = self.Wqkv(hidden_states)
- q, k, v = qkv.chunk(chunks=3, dim=-1)
- q, k = self.rotary_emb(position_ids, q, k)
- k_cache, v_cache = kv_cache
- attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata,
- cache_event)
- output, _ = self.out_proj(attn_output)
- return output
- class PhiMLP(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- linear_method: Optional[LinearMethodBase] = None):
- super().__init__()
- n_inner = getattr(config, "n_inner", None)
- n_inner = n_inner if n_inner is not None else 4 * config.hidden_size
- self.fc1 = ColumnParallelLinear(
- config.hidden_size,
- n_inner,
- linear_method=linear_method,
- )
- self.fc2 = RowParallelLinear(
- n_inner,
- config.hidden_size,
- linear_method=linear_method,
- )
- quant_config = getattr(linear_method, "quant_config", None)
- self.act = get_act_fn(config.activation_function, quant_config,
- n_inner)
- def forward(self, hidden_states):
- hidden_states, _ = self.fc1(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states, _ = self.fc2(hidden_states)
- return hidden_states
- class PhiLayer(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- linear_method: Optional[LinearMethodBase] = None):
- super().__init__()
- self.ln = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_epsilon)
- self.mixer = PhiAttention(config, linear_method)
- self.mlp = PhiMLP(config, linear_method)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: KVCache,
- input_metadata: InputMetadata,
- cache_event: Optional[torch.cuda.Event],
- ) -> torch.Tensor:
- residual = hidden_states
- hidden_states = self.ln(hidden_states)
- attn_outputs = self.mixer(
- position_ids=position_ids,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- input_metadata=input_metadata,
- cache_event=cache_event,
- )
- feed_forward_hidden_states = self.mlp(hidden_states)
- hidden_states = attn_outputs + feed_forward_hidden_states + residual
- return hidden_states
- class PhiModel(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- linear_method: Optional[LinearMethodBase] = None):
- super().__init__()
- self.config = config
- self.linear_method = linear_method
- self.embd = PhiEmbedding(config)
- self.h = nn.ModuleList([
- PhiLayer(config, linear_method)
- for _ in range(config.num_hidden_layers)
- ])
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[KVCache],
- input_metadata: InputMetadata,
- cache_events: Optional[List[torch.cuda.Event]],
- ) -> torch.Tensor:
- hidden_states = self.embd(input_ids)
- for i in range(self.config.num_hidden_layers):
- if cache_events is None:
- cache_event = None
- else:
- cache_event = cache_events[i]
- layer = self.h[i]
- hidden_states = layer(
- positions,
- hidden_states,
- kv_caches[i],
- input_metadata,
- cache_event,
- )
- return hidden_states
- class PhiCausalLMHead(nn.Module):
- def __init__(self, config: PretrainedConfig):
- super().__init__()
- self.ln = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_epsilon)
- self.linear = ParallelLMHead(config.vocab_size,
- config.hidden_size,
- bias=True)
- class PhiForCausalLM(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- linear_method: Optional[LinearMethodBase] = None):
- super().__init__()
- self.config = config
- self.linear_method = linear_method
- self.transformer = PhiModel(config, linear_method)
- self.lm_head = PhiCausalLMHead(config)
- self.sampler = Sampler(config.vocab_size)
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[KVCache],
- input_metadata: InputMetadata,
- cache_events: Optional[List[torch.cuda.Event]],
- ) -> torch.Tensor:
- hidden_states = self.transformer(input_ids, positions, kv_caches,
- input_metadata, cache_events)
- hidden_states = self.lm_head.ln(hidden_states)
- return hidden_states
- def sample(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> SamplerOutput:
- head = self.lm_head.linear
- next_tokens = self.sampler(head.weight, hidden_states,
- sampling_metadata, head.bias)
- return next_tokens
- def load_weights(self,
- model_name_or_path: str,
- cache_dir: Optional[str] = None,
- load_format: str = "auto",
- revision: Optional[str] = None):
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in hf_model_weights_iterator(
- model_name_or_path, cache_dir, load_format, revision):
- if "rotary_emb.inv_freq" in name:
- continue
- # skip loading extra bias for GPTQ models
- if name.endswith("bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|