123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975 |
- # pylint: disable=unused-argument
- import math
- from dataclasses import dataclass
- from typing import TYPE_CHECKING, List, Optional, Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from transformers import PretrainedConfig
- from aphrodite.common.config import LoRAConfig
- from aphrodite.lora.punica import add_lora, add_lora_slice, bgmv
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.megatron.communication_op import (
- tensor_model_parallel_all_gather,
- tensor_model_parallel_all_reduce,
- tensor_model_parallel_gather,
- )
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- RowParallelLinear,
- QKVParallelLinear,
- MergedColumnParallelLinear)
- from aphrodite.modeling.layers.vocab_parallel_embedding import VocabParallelEmbedding, ParallelLMHead
- from aphrodite.modeling.megatron.parallel_state import (
- get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
- from aphrodite.modeling.megatron.utils import split_tensor_along_last_dim
- if TYPE_CHECKING:
- pass
- def _apply_lora(
- x: torch.Tensor,
- lora_a_stacked: torch.Tensor,
- lora_b_stacked: torch.Tensor,
- indices: torch.Tensor,
- output: torch.Tensor,
- ):
- """Applies lora to each input.
- This method applies all loras to each input. It uses the
- indices vector to determine which lora yields the
- correct output. An index of -1 means no lora should be
- applied. This method adds the final lora results to the
- output.
- Input shapes:
- x: (batch_size, hidden_dim)
- lora_a_stacked: (num_loras, lora_rank, hidden_dim)
- lora_b_stacked: (num_loras, output_dim, lora_rank)
- indices: (batch_size)
- output: (batch_size, output_dim)
- """
- org_output = output
- x = x.view(-1, x.shape[-1])
- output = output.view(-1, output.shape[-1])
- indices = indices.view(-1)
- add_lora(output, x, lora_a_stacked, lora_b_stacked, indices, 0, 1.0)
- return output.view_as(org_output)
- def _apply_lora_packed_nslice(
- x: torch.Tensor,
- lora_a_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
- lora_b_stacked: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
- indices: torch.Tensor,
- output: torch.Tensor,
- output_slices: Tuple[int, ...],
- ):
- """Applies lora to each input.
- This method applies all loras to each input. It uses the
- indices vector to determine which lora yields the
- correct output. An index of -1 means no lora should be
- applied. This method adds the final lora results to the
- output.
- This method is used for layers that are composed of multiple sublayers
- (slices) packed together.
- Input shapes:
- x: (batch_size, hidden_dim)
- lora_a_stacked: 3 element tuple of (num_loras, lora_rank, hidden_dim)
- lora_b_stacked: 3 element tuple of (num_loras, output_dim, lora_rank)
- indices: (batch_size)
- output: (batch_size, q_slice_size + 2*kv_slice_size)
- output_slices: n-1 element tuple of (slice_size...), where n is number of slices
- """
- org_output = output
- x = x.view(-1, x.shape[-1])
- output = output.view(-1, output.shape[-1])
- indices = indices.view(-1)
- offset_left = 0
- for slice_idx in range(len(output_slices)):
- add_lora_slice(output, x, lora_a_stacked[slice_idx],
- lora_b_stacked[slice_idx], indices, 0, 1.0, offset_left,
- output_slices[slice_idx])
- offset_left += output_slices[slice_idx]
- return output.view_as(org_output)
- @dataclass
- class LoRAMapping:
- # Per every token in input_ids:
- index_mapping: Tuple[int, ...]
- # Per sampled token:
- prompt_mapping: Tuple[int, ...]
- def __post_init__(self):
- self.index_mapping = tuple(self.index_mapping)
- self.prompt_mapping = tuple(self.prompt_mapping)
- class BaseLayerWithLoRA(nn.Module):
- def create_lora_weights(self, max_loras: int, lora_config: LoRAConfig,
- model_config: PretrainedConfig) -> None:
- """Initializes lora matrices."""
- ...
- def reset_lora(self, index: int):
- """Resets the lora weights at index back to 0."""
- ...
- def set_lora(
- self,
- index: int,
- lora_a: torch.Tensor,
- lora_b: torch.Tensor,
- embeddings_tensor: Optional[torch.Tensor],
- ):
- """Overwrites lora tensors at index."""
- ...
- def set_mapping(
- self,
- base_indices: torch.Tensor,
- sampler_indices: torch.Tensor,
- sampler_indices_padded: torch.Tensor,
- embeddings_indices: torch.Tensor,
- indices_len: List[int],
- ):
- """Sets the mapping indices."""
- ...
- class VocabParallelEmbeddingWithLoRA(BaseLayerWithLoRA):
- def __init__(self, base_layer: VocabParallelEmbedding) -> None:
- super().__init__()
- self.base_layer = base_layer
- def create_lora_weights(
- self,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None) -> None:
- lora_vocab_start_idx = self.base_layer.org_vocab_size
- weights_idx = None
- if self.base_layer.vocab_end_index > lora_vocab_start_idx:
- # We can start adding lora weights
- weights_idx = max(
- lora_vocab_start_idx - self.base_layer.vocab_start_index, 0)
- self.embeddings_slice = (self.base_layer.vocab_start_index -
- self.base_layer.org_vocab_size +
- weights_idx,
- self.base_layer.vocab_end_index -
- self.base_layer.org_vocab_size)
- self.embeddings_weights = self.base_layer.weight.data[weights_idx:]
- self.embeddings_weights.fill_(0)
- else:
- self.embeddings_slice = None
- self.embeddings_weights = None
- self.embeddings_tensors = torch.zeros(
- (
- max_loras,
- lora_config.lora_extra_vocab_size,
- self.base_layer.embedding_dim,
- ),
- dtype=self.base_layer.weight.dtype,
- device=self.base_layer.weight.device,
- )
- self.lora_a_stacked = torch.zeros(
- (
- max_loras,
- self.base_layer.org_vocab_size +
- lora_config.lora_extra_vocab_size,
- lora_config.max_lora_rank,
- ),
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- )
- self.lora_b_stacked = torch.zeros(
- (
- max_loras,
- 1,
- self.base_layer.embedding_dim,
- lora_config.max_lora_rank,
- ),
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- )
- self.lora_a_stacked_2d = self.lora_a_stacked.view(
- self.lora_a_stacked.shape[0] * self.lora_a_stacked.shape[1],
- self.lora_a_stacked.shape[2],
- )
- self.indices: Optional[torch.Tensor] = None
- self.indices_len: Optional[List[int]] = None
- self.embeddings_indices = None
- def reset_lora(self, index: int):
- self.lora_a_stacked[index] = 0
- self.lora_b_stacked[index] = 0
- self.embeddings_tensors[index] = 0
- def set_lora(
- self,
- index: int,
- lora_a: torch.Tensor,
- lora_b: torch.Tensor,
- embeddings_tensor: Optional[torch.Tensor],
- ):
- self.reset_lora(index)
- self.lora_a_stacked[index, :lora_a.shape[0], :lora_a.shape[1]].copy_(
- lora_a, non_blocking=True)
- self.lora_b_stacked[index,
- 0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
- lora_b.T, non_blocking=True)
- if embeddings_tensor is not None:
- self.embeddings_tensors[
- index, :embeddings_tensor.shape[0], :embeddings_tensor.
- shape[1]].copy_(embeddings_tensor, non_blocking=True)
- if self.embeddings_slice is not None:
- # TODO(yard1): Optimize this copy, we don't need to copy
- # everything, just the modified part
- embeddings = self.embeddings_tensors.view(
- self.embeddings_tensors.shape[0] *
- self.embeddings_tensors.shape[1],
- self.embeddings_tensors.shape[2]
- )[self.embeddings_slice[0]:self.embeddings_slice[1]]
- self.embeddings_weights[:embeddings.shape[0]].copy_(embeddings)
- def set_mapping(
- self,
- base_indices: torch.Tensor,
- sampler_indices: torch.Tensor,
- sampler_indices_padded: torch.Tensor,
- embeddings_indices: torch.Tensor,
- indices_len: List[int],
- ):
- self.indices = base_indices
- self.embeddings_indices = embeddings_indices
- self.indices_len = indices_len
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- added_tokens_mask = x > self.base_layer.org_vocab_size - 1
- indices = self.embeddings_indices[1][:self.indices_len[3]].view_as(x)
- full_lora_a_embeddings = F.embedding(
- x + indices,
- self.lora_a_stacked_2d,
- )
- indices = self.embeddings_indices[0][:self.indices_len[3]].view_as(x)
- full_output = self.base_layer.forward(
- x.add_(indices * added_tokens_mask))
- full_output_org = full_output
- if full_output.ndim == 3:
- full_output = full_output.view(
- full_output.shape[0] * full_output.shape[1], -1)
- if full_lora_a_embeddings.ndim == 3:
- full_lora_a_embeddings = full_lora_a_embeddings.view(
- full_lora_a_embeddings.shape[0] *
- full_lora_a_embeddings.shape[1], -1)
- bgmv(full_output, full_lora_a_embeddings, self.lora_b_stacked,
- self.indices[:self.indices_len[0]], 0, 1.0)
- return full_output.view_as(full_output_org)
- class ColumnParallelLinearWithLoRA(BaseLayerWithLoRA):
- def __init__(self, base_layer: ColumnParallelLinear) -> None:
- super().__init__()
- self.base_layer = base_layer
- def create_lora_weights(
- self,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None) -> None:
- self.lora_a_stacked = torch.zeros(
- max_loras,
- 1,
- lora_config.max_lora_rank,
- self.base_layer.weight.shape[1],
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- )
- self.lora_b_stacked = torch.zeros(
- max_loras,
- 1,
- self.base_layer.weight.shape[0],
- lora_config.max_lora_rank,
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- )
- self.indices: Optional[torch.Tensor] = None
- self.indices_len: Optional[List[int]] = None
- self.output_dim = self.lora_b_stacked.shape[1]
- def reset_lora(self, index: int):
- self.lora_a_stacked[index] = 0
- self.lora_b_stacked[index] = 0
- def set_lora(
- self,
- index: int,
- lora_a: torch.Tensor,
- lora_b: torch.Tensor,
- embeddings_tensor: Optional[torch.Tensor],
- ):
- self.reset_lora(index)
- self.lora_a_stacked[index,
- 0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
- lora_a.T, non_blocking=True)
- self.lora_b_stacked[index,
- 0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
- lora_b.T, non_blocking=True)
- def set_mapping(
- self,
- base_indices: torch.Tensor,
- sampler_indices: torch.Tensor,
- sampler_indices_padded: torch.Tensor,
- embeddings_indices: torch.Tensor,
- indices_len: List[int],
- ):
- self.indices = base_indices
- self.indices_len = indices_len
- def apply_weights(self, x: torch.Tensor,
- bias: Optional[torch.Tensor]) -> torch.Tensor:
- output = self.base_layer.linear_method.apply_weights(
- self.base_layer.linear_weights, x, bias)
- _apply_lora(
- x,
- self.lora_a_stacked,
- self.lora_b_stacked,
- self.indices[:self.indices_len[0]],
- output,
- )
- return output
- def forward(self, input_):
- """Forward of ColumnParallelLinear
- Args:
- input_: Tensor whose last dimension is `input_size`.
- Returns:
- - output
- - bias
- """
- bias = (self.base_layer.bias
- if not self.base_layer.skip_bias_add else None)
- # Matrix multiply.
- output_parallel = self.apply_weights(input_, bias)
- if self.base_layer.gather_output:
- # All-gather across the partitions.
- output = tensor_model_parallel_all_gather(output_parallel)
- else:
- output = output_parallel
- output_bias = (self.base_layer.bias
- if self.base_layer.skip_bias_add else None)
- return output, output_bias
- @property
- def linear_weights(self):
- return self.base_layer.linear_weights
- class MergedColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
- """ColumnParallelLinear layer that is composed of 2 sublayers (slices)
- packed together (eg. gate_proj + up_proj -> gate_up_proj).
- This means we have 2 LoRAs, each applied to one half of the layer.
- Both slices must have the same size.
- """
- def __init__(self, base_layer: MergedColumnParallelLinear) -> None:
- super().__init__(base_layer)
- def create_lora_weights(
- self,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None) -> None:
- n_slices = 2
- if not (len(self.base_layer.output_sizes) == n_slices
- and self.base_layer.output_sizes[0]
- == self.base_layer.output_sizes[1]):
- raise ValueError(
- "LoRAColumnParallelLinear2Slice requires 2 slices with "
- "the same size.")
- self.tp_size = get_tensor_model_parallel_world_size()
- self.lora_a_stacked = tuple(
- torch.zeros(
- max_loras,
- 1,
- lora_config.max_lora_rank,
- self.base_layer.weight.shape[1],
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- ) for _ in range(n_slices))
- self.lora_b_stacked = tuple(
- torch.zeros(
- max_loras,
- 1,
- self.base_layer.weight.shape[0] // 2,
- lora_config.max_lora_rank,
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- ) for _ in range(n_slices))
- self.indices: Optional[torch.Tensor] = None
- self.output_dim = self.lora_b_stacked[0].shape[2]
- def reset_lora(self, index: int):
- self.lora_a_stacked[0][index] = 0
- self.lora_a_stacked[1][index] = 0
- self.lora_b_stacked[0][index] = 0
- self.lora_b_stacked[1][index] = 0
- def set_lora(
- self,
- index: int,
- lora_a: torch.Tensor,
- lora_b: torch.Tensor,
- embeddings_tensor: Optional[torch.Tensor],
- ):
- self.reset_lora(index)
- if self.tp_size > 1:
- tensor_model_parallel_rank = get_tensor_model_parallel_rank()
- shard_size = self.output_dim
- start_idx = tensor_model_parallel_rank * shard_size
- end_idx = (tensor_model_parallel_rank + 1) * shard_size
- lora_b = lora_b[0][:,
- start_idx:end_idx], lora_b[1][:,
- start_idx:end_idx]
- if lora_a[0] is not None:
- self.lora_a_stacked[0][
- index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_(
- lora_a[0].T, non_blocking=True)
- self.lora_b_stacked[0][
- index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_(
- lora_b[0].T, non_blocking=True)
- if lora_a[1] is not None:
- self.lora_a_stacked[1][
- index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_(
- lora_a[1].T, non_blocking=True)
- self.lora_b_stacked[1][
- index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_(
- lora_b[1].T, non_blocking=True)
- def apply_weights(self, x: torch.Tensor,
- bias: Optional[torch.Tensor]) -> torch.Tensor:
- output = self.base_layer.linear_method.apply_weights(
- self.base_layer.linear_weights, x, bias)
- _apply_lora_packed_nslice(
- x,
- self.lora_a_stacked,
- self.lora_b_stacked,
- self.indices[:self.indices_len[0]],
- output,
- (self.output_dim, self.output_dim),
- )
- return output
- class QKVParallelLinearWithLora(ColumnParallelLinearWithLoRA):
- """ColumnParallelLinear layer that is composed of 3 sublayers (slices)
- packed together in qkv proj fashion
- (q_proj + k_proj + v_proj -> qkv_proj).
- This means we have 3 LoRAs, each applied to one slice of the layer.
- Q slice may have different shape than K and V slices (which both have
- the same shape).
- """
- def __init__(self, base_layer: QKVParallelLinear) -> None:
- super().__init__(base_layer)
- def create_lora_weights(
- self,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None) -> None:
- self.tp_size = get_tensor_model_parallel_world_size()
- tp_rank = get_tensor_model_parallel_rank()
- self.q_proj_shard_size = (self.base_layer.num_heads *
- self.base_layer.head_size)
- self.kv_proj_shard_size = (self.base_layer.num_kv_heads *
- self.base_layer.head_size)
- self.q_shard_id = tp_rank
- self.kv_shard_id = tp_rank // self.base_layer.num_kv_head_replicas
- # q, k, v
- self.lora_a_stacked = (
- torch.zeros(
- max_loras,
- 1,
- lora_config.max_lora_rank,
- self.base_layer.weight.shape[1],
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- ),
- torch.zeros(
- max_loras,
- 1,
- lora_config.max_lora_rank,
- self.base_layer.weight.shape[1],
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- ),
- torch.zeros(
- max_loras,
- 1,
- lora_config.max_lora_rank,
- self.base_layer.weight.shape[1],
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- ),
- )
- self.lora_b_stacked = (
- torch.zeros(
- max_loras,
- 1,
- self.q_proj_shard_size,
- lora_config.max_lora_rank,
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- ),
- torch.zeros(
- max_loras,
- 1,
- self.kv_proj_shard_size,
- lora_config.max_lora_rank,
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- ),
- torch.zeros(
- max_loras,
- 1,
- self.kv_proj_shard_size,
- lora_config.max_lora_rank,
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- ),
- )
- self.output_slices = (self.q_proj_shard_size, self.kv_proj_shard_size,
- self.kv_proj_shard_size)
- self.packed_indices: Optional[torch.Tensor] = None
- self.standard_indices: Optional[torch.Tensor] = None
- self.indices_len: Optional[List[int]] = None
- def reset_lora(self, index: int):
- self.lora_a_stacked[0][index] = 0
- self.lora_b_stacked[0][index] = 0
- self.lora_a_stacked[1][index] = 0
- self.lora_b_stacked[1][index] = 0
- self.lora_a_stacked[2][index] = 0
- self.lora_b_stacked[2][index] = 0
- def set_lora(
- self,
- index: int,
- lora_a: torch.Tensor,
- lora_b: torch.Tensor,
- embeddings_tensor: Optional[torch.Tensor],
- ):
- self.reset_lora(index)
- if self.tp_size > 1:
- if lora_b[0] is not None:
- lora_b_q = lora_b[0][:, self.q_proj_shard_size *
- self.q_shard_id:self.q_proj_shard_size *
- (self.q_shard_id + 1)]
- self.lora_b_stacked[0][
- index, 0, :lora_b_q.shape[1], :lora_b_q.shape[0]].copy_(
- lora_b_q.T, non_blocking=True)
- if lora_b[1] is not None:
- lora_b_k = lora_b[1][:, self.kv_proj_shard_size *
- self.kv_shard_id:self.kv_proj_shard_size *
- (self.kv_shard_id + 1)]
- self.lora_b_stacked[1][
- index, 0, :lora_b_k.shape[1], :lora_b_k.shape[0]].copy_(
- lora_b_k.T, non_blocking=True)
- if lora_b[2] is not None:
- lora_b_v = lora_b[2][:, self.kv_proj_shard_size *
- self.kv_shard_id:self.kv_proj_shard_size *
- (self.kv_shard_id + 1)]
- self.lora_b_stacked[2][
- index, 0, :lora_b_v.shape[1], :lora_b_v.shape[0]].copy_(
- lora_b_v.T, non_blocking=True)
- else:
- if lora_b[0] is not None:
- self.lora_b_stacked[0][
- index, 0, :lora_b[0].shape[1], :lora_b[0].shape[0]].copy_(
- lora_b[0].T, non_blocking=True)
- if lora_b[1] is not None:
- self.lora_b_stacked[1][
- index, 0, :lora_b[1].shape[1], :lora_b[1].shape[0]].copy_(
- lora_b[1].T, non_blocking=True)
- if lora_b[2] is not None:
- self.lora_b_stacked[2][
- index, 0, :lora_b[2].shape[1], :lora_b[2].shape[0]].copy_(
- lora_b[2].T, non_blocking=True)
- if lora_a[0] is not None:
- self.lora_a_stacked[0][
- index, 0, :lora_a[0].shape[1], :lora_a[0].shape[0]].copy_(
- lora_a[0].T, non_blocking=True)
- if lora_a[1] is not None:
- self.lora_a_stacked[1][
- index, 0, :lora_a[1].shape[1], :lora_a[1].shape[0]].copy_(
- lora_a[1].T, non_blocking=True)
- if lora_a[2] is not None:
- self.lora_a_stacked[2][
- index, 0, :lora_a[2].shape[1], :lora_a[2].shape[0]].copy_(
- lora_a[2].T, non_blocking=True)
- def apply_weights(self, x: torch.Tensor,
- bias: Optional[torch.Tensor]) -> torch.Tensor:
- output = self.base_layer.linear_method.apply_weights(
- self.base_layer.linear_weights, x, bias)
- _apply_lora_packed_nslice(
- x,
- self.lora_a_stacked,
- self.lora_b_stacked,
- self.indices[:self.indices_len[0]],
- output,
- self.output_slices,
- )
- return output
- class RowParallelLinearWithLoRA(BaseLayerWithLoRA):
- def __init__(self, base_layer: RowParallelLinear) -> None:
- super().__init__()
- self.base_layer = base_layer
- def create_lora_weights(
- self,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None) -> None:
- self.lora_a_stacked = torch.zeros(
- (
- max_loras,
- 1,
- lora_config.max_lora_rank,
- self.base_layer.weight.shape[1],
- ),
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- )
- self.lora_b_stacked = torch.zeros(
- (
- max_loras,
- 1,
- self.base_layer.weight.shape[0],
- lora_config.max_lora_rank,
- ),
- dtype=lora_config.lora_dtype,
- device=self.base_layer.weight.device,
- )
- self.indices: Optional[torch.Tensor] = None
- self.indices_len: Optional[List[int]] = None
- def reset_lora(self, index: int):
- self.lora_a_stacked[index] = 0
- self.lora_b_stacked[index] = 0
- def set_lora(
- self,
- index: int,
- lora_a: torch.Tensor,
- lora_b: torch.Tensor,
- embeddings_tensor: Optional[torch.Tensor],
- ):
- self.reset_lora(index)
- if self.base_layer.tp_size > 1:
- tensor_model_parallel_rank = get_tensor_model_parallel_rank()
- shard_size = self.base_layer.weight.shape[1]
- start_idx = tensor_model_parallel_rank * shard_size
- end_idx = (tensor_model_parallel_rank + 1) * shard_size
- lora_a = lora_a[start_idx:end_idx, :]
- self.lora_a_stacked[index,
- 0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
- lora_a.T, non_blocking=True)
- self.lora_b_stacked[index,
- 0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
- lora_b.T, non_blocking=True)
- def set_mapping(
- self,
- base_indices: torch.Tensor,
- sampler_indices: torch.Tensor,
- sampler_indices_padded: torch.Tensor,
- embeddings_indices: torch.Tensor,
- indices_len: List[int],
- ):
- self.indices = base_indices
- self.indices_len = indices_len
- def apply_weights(self, x: torch.Tensor) -> torch.Tensor:
- output = self.base_layer.linear_method.apply_weights(
- self.base_layer.linear_weights, x)
- _apply_lora(
- x,
- self.lora_a_stacked,
- self.lora_b_stacked,
- self.indices[:self.indices_len[0]],
- output,
- )
- return output
- def forward(self, input_):
- """Forward of RowParallelLinear
- Args:
- input_: tensor whose last dimension is `input_size`. If
- `input_is_parallel` is set, then the last dimension
- is `input_size // tp_size`.
- Returns:
- - output
- - bias
- """
- # Set up backprop all-reduce.
- if self.base_layer.input_is_parallel:
- input_parallel = input_
- else:
- # TODO: simplify code below
- tp_rank = get_tensor_model_parallel_rank()
- splitted_input = split_tensor_along_last_dim(
- input_, num_partitions=self.base_layer.tp_size)
- input_parallel = splitted_input[tp_rank].contiguous()
- # Matrix multiply.
- output_parallel = self.apply_weights(input_parallel)
- if self.base_layer.reduce_results and self.base_layer.tp_size > 1:
- output_ = tensor_model_parallel_all_reduce(output_parallel)
- else:
- output_ = output_parallel
- if not self.base_layer.skip_bias_add:
- output = (output_ + self.base_layer.bias
- if self.base_layer.bias is not None else output_)
- output_bias = None
- else:
- output = output_
- output_bias = self.base_layer.bias
- return output, output_bias
- @property
- def weight(self):
- return self.base_layer.weight
- class SamplerWithLoRA(BaseLayerWithLoRA):
- def __init__(
- self,
- base_layer: Sampler,
- hidden_size: int,
- dtype: torch.dtype,
- device: torch.device,
- ) -> None:
- super().__init__()
- self.base_layer = base_layer
- self.hidden_size = hidden_size
- self.dtype = dtype
- self.device = device
- @property
- def vocab_size(self):
- return self.base_layer.vocab_size
- @property
- def org_vocab_size(self):
- return self.base_layer.org_vocab_size
- @property
- def include_gpu_probs_tensor(self):
- return self.base_layer.include_gpu_probs_tensor
- def create_lora_weights(
- self,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None,
- ) -> None:
- # Keep this in sync with csrc/punica/bgmv/bgmv_config.h
- if 32000 < self.base_layer.vocab_size > 33024:
- raise ValueError(
- "When using LoRA, vocab size must be 32000 >= vocab_size <= 33024"
- )
- self.lora_a_stacked = torch.zeros(
- (
- max_loras,
- 1,
- lora_config.max_lora_rank,
- self.hidden_size,
- ),
- dtype=lora_config.lora_dtype,
- device=self.device,
- )
- self.lora_b_stacked = torch.zeros(
- (
- max_loras,
- 1,
- # Pad for kernel compatibility
- math.ceil(self.base_layer.vocab_size /
- lora_config.lora_vocab_padding_size) *
- lora_config.lora_vocab_padding_size,
- lora_config.max_lora_rank,
- ),
- dtype=lora_config.lora_dtype,
- device=self.device,
- )
- self.embeddings_tensors = torch.full(
- (max_loras, lora_config.lora_extra_vocab_size, self.hidden_size),
- fill_value=float("-inf"),
- dtype=self.dtype,
- device=self.device,
- )
- self.indices = None
- self.indices_padded = None
- self.indices_len = None
- def reset_lora(self, index: int):
- self.lora_a_stacked[index] = 0
- self.lora_b_stacked[index] = 0
- self.embeddings_tensors[index] = float("-inf")
- def set_lora(
- self,
- index: int,
- lora_a: torch.Tensor,
- lora_b: torch.Tensor,
- embeddings_tensor: Optional[torch.Tensor],
- ):
- self.reset_lora(index)
- self.lora_a_stacked[index,
- 0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
- lora_a.T, non_blocking=True)
- self.lora_b_stacked[index,
- 0, :lora_b.shape[1], :lora_b.shape[0]].copy_(
- lora_b.T, non_blocking=True)
- if embeddings_tensor is not None:
- self.embeddings_tensors[
- index, :embeddings_tensor.shape[0], :embeddings_tensor.
- shape[1], ] = embeddings_tensor
- def set_mapping(
- self,
- base_indices: torch.Tensor,
- sampler_indices: torch.Tensor,
- sampler_indices_padded: torch.Tensor,
- embeddings_indices: torch.Tensor,
- indices_len: List[int],
- ):
- self.indices = sampler_indices
- self.indices_padded = sampler_indices_padded
- self.indices_len = indices_len
- def _get_logits(
- self,
- hidden_states: torch.Tensor,
- embedding: torch.Tensor,
- embedding_bias: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- # Get the logits for the next tokens.
- logits = torch.matmul(hidden_states, embedding.t())
- if embedding_bias is not None:
- logits += embedding_bias
- logits = tensor_model_parallel_gather(logits)
- if logits is None:
- return None
- lora_logits = torch.empty(
- self.embeddings_tensors.shape[0] + 1,
- self.embeddings_tensors.shape[1],
- hidden_states.shape[0],
- dtype=self.embeddings_tensors.dtype,
- device=self.embeddings_tensors.device,
- )
- torch.matmul(self.embeddings_tensors,
- hidden_states.T,
- out=lora_logits[:-1])
- lora_logits[-1] = float("-inf")
- lora_logits = lora_logits.mT
- lora_logits = (lora_logits.reshape(
- lora_logits.shape[0] * lora_logits.shape[1],
- lora_logits.shape[2],
- ).index_select(0,
- self.indices_padded[:self.indices_len[2]]).nan_to_num_(
- nan=float("-inf"),
- posinf=float("inf"),
- neginf=float("-inf")))
- logits[:,
- self.base_layer.org_vocab_size:self.base_layer.org_vocab_size +
- lora_logits.shape[1]] = lora_logits
- _apply_lora(
- hidden_states,
- self.lora_a_stacked,
- self.lora_b_stacked,
- self.indices[:self.indices_len[1]],
- logits,
- )
- # Remove paddings in vocab (if any).
- logits = logits[:, :self.base_layer.vocab_size]
- return logits
- def forward(self, *args, **kwargs):
- return type(self.base_layer).forward(self, *args, **kwargs)
- def from_layer(
- layer: nn.Module,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None) -> BaseLayerWithLoRA:
- supported_layer_types = {
- VocabParallelEmbedding: VocabParallelEmbeddingWithLoRA,
- ColumnParallelLinear: ColumnParallelLinearWithLoRA,
- QKVParallelLinear: QKVParallelLinearWithLora,
- MergedColumnParallelLinear: MergedColumnParallelLinearWithLoRA,
- RowParallelLinear: RowParallelLinearWithLoRA,
- }
- for src_layer_type, lora_layer_type in supported_layer_types.items():
- if type(layer) is src_layer_type: # pylint: disable=unidiomatic-typecheck
- ret = lora_layer_type(layer)
- ret.create_lora_weights(max_loras, lora_config, model_config)
- return ret
- return layer
- def from_layer_sampler(
- layer: Sampler,
- lm_head: ParallelLMHead,
- max_loras: int,
- lora_config: LoRAConfig,
- model_config: Optional[PretrainedConfig] = None,
- ) -> SamplerWithLoRA:
- ret = SamplerWithLoRA(layer, lm_head.embedding_dim, lm_head.weight.dtype,
- lm_head.weight.device)
- ret.create_lora_weights(max_loras, lora_config, model_config)
- return ret
|