model_runner.py 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770
  1. import dataclasses
  2. import gc
  3. import itertools
  4. import os
  5. import time
  6. import warnings
  7. import weakref
  8. from dataclasses import dataclass
  9. from typing import (TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple, Type,
  10. TypeVar, Union)
  11. import numpy as np
  12. import torch
  13. import torch.distributed
  14. import torch.nn as nn
  15. from loguru import logger
  16. try:
  17. from flashinfer import BatchDecodeWithPagedKVCacheWrapper
  18. from flashinfer.decode import CUDAGraphBatchDecodeWithPagedKVCacheWrapper
  19. from flashinfer.prefill import BatchPrefillWithPagedKVCacheWrapper
  20. FLASHINFER_WORKSPACE_BUFFER_SIZE = 256 * 1024 * 1024
  21. except ImportError:
  22. BatchDecodeWithPagedKVCacheWrapper = None
  23. CUDAGraphBatchDecodeWithPagedKVCacheWrapper = None
  24. BatchPrefillWithPagedKVCacheWrapper = None
  25. FLASHINFER_WORKSPACE_BUFFER_SIZE = 0
  26. from aphrodite.attention import AttentionMetadata, get_attn_backend
  27. from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
  28. LoRAConfig, ModelConfig, MultiModalConfig,
  29. ParallelConfig, PromptAdapterConfig,
  30. SchedulerConfig)
  31. from aphrodite.common.sampling_params import SamplingParams
  32. from aphrodite.common.sequence import (IntermediateTensors, SamplerOutput,
  33. SequenceGroupMetadata)
  34. from aphrodite.common.utils import (CudaMemoryProfiler, PyObjectCache,
  35. async_tensor_h2d, flatten_2d_lists,
  36. get_kv_cache_torch_dtype, is_hip,
  37. is_pin_memory_available)
  38. from aphrodite.distributed import get_pp_group
  39. from aphrodite.distributed.parallel_state import (
  40. get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size,
  41. graph_capture)
  42. from aphrodite.inputs import INPUT_REGISTRY, InputRegistry
  43. from aphrodite.lora.layers import LoRAMapping
  44. from aphrodite.lora.request import LoRARequest
  45. from aphrodite.lora.worker_manager import LRUCacheWorkerLoRAManager
  46. from aphrodite.modeling import SamplingMetadata, SamplingMetadataCache
  47. from aphrodite.modeling.model_loader import get_model
  48. from aphrodite.modeling.model_loader.tensorizer import TensorizerConfig
  49. from aphrodite.modeling.models.interfaces import (supports_lora,
  50. supports_multimodal)
  51. from aphrodite.modeling.models.utils import set_cpu_offload_max_bytes
  52. from aphrodite.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
  53. MultiModalInputs, MultiModalRegistry)
  54. from aphrodite.prompt_adapter.layers import PromptAdapterMapping
  55. from aphrodite.prompt_adapter.request import PromptAdapterRequest
  56. from aphrodite.prompt_adapter.worker_manager import (
  57. LRUCacheWorkerPromptAdapterManager)
  58. from aphrodite.task_handler.model_runner_base import (
  59. ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
  60. _add_attn_metadata_broadcastable_dict,
  61. _add_sampling_metadata_broadcastable_dict,
  62. _init_attn_metadata_from_tensor_dict,
  63. _init_sampling_metadata_from_tensor_dict)
  64. if TYPE_CHECKING:
  65. from aphrodite.attention.backends.abstract import AttentionBackend
  66. _PAD_SLOT_ID = -1
  67. LORA_WARMUP_RANK = 8
  68. _BATCH_SIZE_ALIGNMENT = 8
  69. # Capture graphs for token size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
  70. # NOTE: _get_graph_batch_size needs to be updated if this list is changed.
  71. _BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
  72. _BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
  73. ]
  74. _NUM_WARMUP_ITERS = 2
  75. APHRODITE_TEST_DYNAMO_GRAPH_CAPTURE = int(
  76. os.environ.get("APHRODITE_TEST_DYNAMO_GRAPH_CAPTURE", "0"))
  77. TModelInputForGPU = TypeVar('TModelInputForGPU', bound="ModelInputForGPU")
  78. @dataclass(frozen=True)
  79. class ModelInputForGPU(ModelRunnerInputBase):
  80. """
  81. This base class contains metadata needed for the base model forward pass
  82. but not metadata for possible additional steps, e.g., sampling. Model
  83. runners that run additional steps should subclass this method to add
  84. additional fields.
  85. """
  86. input_tokens: Optional[torch.Tensor] = None
  87. input_positions: Optional[torch.Tensor] = None
  88. seq_lens: Optional[List[int]] = None
  89. query_lens: Optional[List[int]] = None
  90. lora_mapping: Optional["LoRAMapping"] = None
  91. lora_requests: Optional[Set[LoRARequest]] = None
  92. attn_metadata: Optional["AttentionMetadata"] = None
  93. prompt_adapter_mapping: Optional[PromptAdapterMapping] = None
  94. prompt_adapter_requests: Optional[Set[PromptAdapterRequest]] = None
  95. multi_modal_kwargs: Optional[BatchedTensorInputs] = None
  96. request_ids_to_seq_ids: Optional[Dict[str, List[int]]] = None
  97. finished_requests_ids: Optional[List[str]] = None
  98. virtual_engine: int = 0
  99. def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
  100. tensor_dict = {
  101. "input_tokens": self.input_tokens,
  102. "input_positions": self.input_positions,
  103. "lora_requests": self.lora_requests,
  104. "lora_mapping": self.lora_mapping,
  105. "multi_modal_kwargs": self.multi_modal_kwargs,
  106. "prompt_adapter_mapping": self.prompt_adapter_mapping,
  107. "prompt_adapter_requests": self.prompt_adapter_requests,
  108. "virtual_engine": self.virtual_engine,
  109. "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
  110. "finished_requests_ids": self.finished_requests_ids,
  111. }
  112. _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
  113. return tensor_dict
  114. @classmethod
  115. def from_broadcasted_tensor_dict(
  116. cls: Type[TModelInputForGPU],
  117. tensor_dict: Dict[str, Any],
  118. attn_backend: Optional["AttentionBackend"] = None,
  119. ) -> TModelInputForGPU:
  120. if attn_backend is not None:
  121. tensor_dict = _init_attn_metadata_from_tensor_dict(
  122. attn_backend, tensor_dict)
  123. return cls(**tensor_dict)
  124. @dataclass(frozen=True)
  125. class ModelInputForGPUWithSamplingMetadata(ModelInputForGPU):
  126. """
  127. Used by the ModelRunner.
  128. """
  129. sampling_metadata: Optional["SamplingMetadata"] = None
  130. # Used for speculative decoding. We do not broadcast it because it is only
  131. # used by the driver worker.
  132. is_prompt: Optional[bool] = None
  133. def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
  134. tensor_dict = {
  135. "input_tokens": self.input_tokens,
  136. "input_positions": self.input_positions,
  137. "lora_requests": self.lora_requests,
  138. "lora_mapping": self.lora_mapping,
  139. "multi_modal_kwargs": self.multi_modal_kwargs,
  140. "prompt_adapter_mapping": self.prompt_adapter_mapping,
  141. "prompt_adapter_requests": self.prompt_adapter_requests,
  142. "virtual_engine": self.virtual_engine,
  143. "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
  144. "finished_requests_ids": self.finished_requests_ids,
  145. }
  146. _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
  147. _add_sampling_metadata_broadcastable_dict(tensor_dict,
  148. self.sampling_metadata)
  149. return tensor_dict
  150. @classmethod
  151. def from_broadcasted_tensor_dict(
  152. cls,
  153. tensor_dict: Dict[str, Any],
  154. attn_backend: Optional["AttentionBackend"] = None,
  155. ) -> "ModelInputForGPUWithSamplingMetadata":
  156. tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
  157. if attn_backend is not None:
  158. tensor_dict = _init_attn_metadata_from_tensor_dict(
  159. attn_backend, tensor_dict)
  160. return cls(**tensor_dict)
  161. class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
  162. """Build ModelInputForGPU from SequenceGroupMetadata."""
  163. # NOTE: ideally, we dould be using a dataclass(kw_only=True)
  164. # here, so that this can be subclassed easily, but kw_only
  165. # is not supported in python<3.10.
  166. class InterDataForSeqGroup:
  167. """Intermediate data for the current sequence group."""
  168. def simple_reinit(self):
  169. self.input_tokens[0].clear() # type: ignore
  170. self.input_positions[0].clear() # type: ignore
  171. self.seq_lens[0] = 0 # type: ignore
  172. self.orig_seq_lens[0] = 0 # type: ignore
  173. self.query_lens[0] = 0 # type: ignore
  174. self.context_lens[0] = 0 # type: ignore
  175. self.curr_sliding_window_blocks[0] = 0 # type: ignore
  176. self.lora_index_mapping.clear() # type: ignore
  177. self.lora_prompt_mapping.clear() # type: ignore
  178. self.lora_requests.clear() # type: ignore
  179. self.prompt_adapter_index_mapping.clear() # type: ignore
  180. self.prompt_adapter_prompt_mapping.clear() # type: ignore
  181. def __init__(
  182. self,
  183. *,
  184. # From sequence group metadata.
  185. request_id: str,
  186. seq_ids: List[int],
  187. is_prompt: bool,
  188. block_tables: Optional[Dict[int, List[int]]],
  189. computed_block_nums: List[int],
  190. n_seqs: int = 0,
  191. # Input tokens and positions.
  192. input_tokens: Optional[List[List[int]]] = None,
  193. input_positions: Optional[List[List[int]]] = None,
  194. # The sequence length (may be capped to the sliding window).
  195. seq_lens: Optional[List[int]] = None,
  196. # The original sequence length (before applying sliding window).
  197. # This is used to compute slot mapping.
  198. orig_seq_lens: Optional[List[int]] = None,
  199. # The query length.
  200. query_lens: Optional[List[int]] = None,
  201. # The number of tokens that are already computed.
  202. context_lens: Optional[List[int]] = None,
  203. # The current sliding window block.
  204. curr_sliding_window_blocks: Optional[List[int]] = None,
  205. # LoRA inputs.
  206. lora_index_mapping: Optional[List[List[int]]] = None,
  207. lora_prompt_mapping: Optional[List[List[int]]] = None,
  208. lora_requests: Optional[Set[LoRARequest]] = None,
  209. # Prompt adapter inputs.
  210. prompt_adapter_index_mapping: Optional[List[int]] = None,
  211. prompt_adapter_prompt_mapping: Optional[List[int]] = None,
  212. prompt_adapter_request: Optional[PromptAdapterRequest] = None,
  213. # Multi-modal inputs.
  214. multi_modal_inputs: Optional[MultiModalInputs] = None,
  215. # Whether the prefix cache is hit (prefill only).
  216. prefix_cache_hit: bool = False,
  217. reinit: bool = False,
  218. reinit_use_defaults: bool = False,
  219. ):
  220. if reinit:
  221. assert len(self.seq_ids) == len(seq_ids) # type: ignore
  222. for i, seq_id in enumerate(seq_ids):
  223. self.seq_ids[i] = seq_id # type: ignore
  224. else:
  225. self.seq_ids = seq_ids
  226. self.request_id = request_id
  227. self.is_prompt = is_prompt
  228. self.block_tables = block_tables
  229. self.computed_block_nums = computed_block_nums
  230. self.n_seqs = n_seqs
  231. if reinit:
  232. if len(self.seq_ids) == 1 and reinit_use_defaults:
  233. self.simple_reinit()
  234. else:
  235. if input_tokens:
  236. self.input_tokens = input_tokens
  237. else:
  238. for seq_id in range(len(self.seq_ids)):
  239. self.input_tokens[seq_id].clear()
  240. if input_positions:
  241. self.input_positions = input_positions
  242. else:
  243. for seq_id in range(len(self.seq_ids)):
  244. self.input_positions[seq_id].clear()
  245. if seq_lens:
  246. self.seq_lens = seq_lens
  247. else:
  248. for seq_id in range(len(self.seq_ids)):
  249. self.seq_lens[seq_id] = 0
  250. if orig_seq_lens:
  251. self.orig_seq_lens = orig_seq_lens
  252. else:
  253. for seq_id in range(len(self.seq_ids)):
  254. self.orig_seq_lens[seq_id] = 0
  255. if query_lens:
  256. self.query_lens = query_lens
  257. else:
  258. for seq_id in range(len(self.seq_ids)):
  259. self.query_lens[seq_id] = 0
  260. if context_lens:
  261. self.context_lens = context_lens
  262. else:
  263. for seq_id in range(len(self.seq_ids)):
  264. self.context_lens[seq_id] = 0
  265. if curr_sliding_window_blocks:
  266. self.curr_sliding_window_blocks = \
  267. curr_sliding_window_blocks
  268. else:
  269. for seq_id in range(len(self.seq_ids)):
  270. self.curr_sliding_window_blocks[seq_id] = 0
  271. if lora_index_mapping:
  272. self.lora_index_mapping = lora_index_mapping
  273. else:
  274. self.lora_index_mapping.clear()
  275. if lora_prompt_mapping:
  276. self.lora_prompt_mapping = lora_prompt_mapping
  277. else:
  278. self.lora_prompt_mapping.clear()
  279. if lora_requests:
  280. self.lora_requests = lora_requests
  281. else:
  282. self.lora_requests.clear()
  283. if prompt_adapter_index_mapping:
  284. self.prompt_adapter_index_mapping = \
  285. prompt_adapter_index_mapping
  286. else:
  287. self.prompt_adapter_index_mapping.clear()
  288. if prompt_adapter_prompt_mapping:
  289. self.prompt_adapter_prompt_mapping = \
  290. prompt_adapter_prompt_mapping
  291. else:
  292. self.prompt_adapter_prompt_mapping.clear()
  293. else:
  294. self.input_tokens = input_tokens or []
  295. self.input_positions = input_positions or []
  296. self.seq_lens = seq_lens or []
  297. self.orig_seq_lens = orig_seq_lens or []
  298. self.query_lens = query_lens or []
  299. self.context_lens = context_lens or []
  300. self.curr_sliding_window_blocks = \
  301. curr_sliding_window_blocks or []
  302. self.lora_index_mapping = lora_index_mapping or []
  303. self.lora_prompt_mapping = lora_prompt_mapping or []
  304. self.lora_requests = lora_requests or set()
  305. self.prompt_adapter_index_mapping = (
  306. prompt_adapter_index_mapping or [])
  307. self.prompt_adapter_prompt_mapping = (
  308. prompt_adapter_prompt_mapping or [])
  309. self.prompt_adapter_request = prompt_adapter_request
  310. self.multi_modal_inputs = multi_modal_inputs
  311. self.prefix_cache_hit = prefix_cache_hit
  312. self.n_seqs = len(self.seq_ids)
  313. if not reinit:
  314. self.__post_init__()
  315. def __post_init__(self):
  316. self.n_seqs = len(self.seq_ids)
  317. self.input_tokens = [[] for _ in range(self.n_seqs)]
  318. self.input_positions = [[] for _ in range(self.n_seqs)]
  319. self.seq_lens = [0] * self.n_seqs
  320. self.orig_seq_lens = [0] * self.n_seqs
  321. self.query_lens = [0] * self.n_seqs
  322. self.context_lens = [0] * self.n_seqs
  323. self.curr_sliding_window_blocks = [0] * self.n_seqs
  324. self.lora_index_mapping = []
  325. self.lora_prompt_mapping = []
  326. def gen_inter_data_builder(self, num_seqs: int):
  327. return lambda: ModelInputForGPUBuilder.InterDataForSeqGroup(
  328. request_id="",
  329. seq_ids=[0] * num_seqs,
  330. is_prompt=True,
  331. block_tables=None,
  332. computed_block_nums=[])
  333. def init_cached_inter_data(self, *args, **kwargs):
  334. assert len(args) == 0
  335. assert "seq_ids" in kwargs
  336. seq_ids = kwargs["seq_ids"]
  337. num_seqs = len(seq_ids)
  338. # The inter-data cache is per model_runner
  339. inter_data_cache = self.runner.inter_data_cache
  340. if num_seqs not in inter_data_cache:
  341. inter_data_cache[num_seqs] = PyObjectCache(
  342. self.gen_inter_data_builder(num_seqs))
  343. obj = inter_data_cache[num_seqs].get_object()
  344. obj.__init__(*args, **kwargs)
  345. return obj
  346. def reset_cached_inter_data(self):
  347. for cache in self.runner.inter_data_cache.values():
  348. cache.reset()
  349. def __init__(self,
  350. runner: "GPUModelRunnerBase",
  351. finished_requests_ids: Optional[List[str]] = None):
  352. super().__init__()
  353. # Compute functions for each sequence in a sequence group.
  354. # WARNING: The order of the functions matters!
  355. self.per_seq_compute_fns = [
  356. self._compute_lens,
  357. self._compute_for_prefix_cache_hit,
  358. self._compute_for_sliding_window,
  359. self._compute_lora_input,
  360. ]
  361. # Compute functions for each sequence group.
  362. # WARNING: The order of the functions matters!
  363. self.per_seq_group_compute_fns = [
  364. self._compute_prompt_adapter_input,
  365. self._compute_multi_modal_input,
  366. ]
  367. self.runner = runner
  368. self.model_input_cls = self.runner._model_input_cls
  369. self.attn_backend = self.runner.attn_backend
  370. self.scheduler_config = self.runner.scheduler_config
  371. self.sliding_window = self.runner.sliding_window
  372. self.block_size = self.runner.block_size
  373. self.enable_lora = self.runner.lora_config is not None
  374. self.enable_prompt_adapter = (self.runner.prompt_adapter_config
  375. is not None)
  376. self.multi_modal_input_mapper = self.runner.multi_modal_input_mapper
  377. self.finished_requests_ids = finished_requests_ids
  378. self.decode_only = True
  379. # Intermediate data (data in CPU before going to GPU) for
  380. # the current sequence group.
  381. self.inter_data_list: List[
  382. ModelInputForGPUBuilder.InterDataForSeqGroup] = []
  383. # Attention metadata inputs.
  384. self.attn_metadata_builder = self.attn_backend.make_metadata_builder(
  385. weakref.proxy(self))
  386. # Engine/Model configurations.
  387. self.chunked_prefill_enabled = (
  388. self.scheduler_config is not None
  389. and self.scheduler_config.chunked_prefill_enabled)
  390. if self.sliding_window is not None:
  391. self.sliding_window_blocks = (
  392. self.sliding_window + self.block_size - 1) // self.block_size
  393. self.block_aligned_sliding_window = \
  394. self.sliding_window_blocks * self.block_size
  395. def _compute_lens(self, inter_data: InterDataForSeqGroup, seq_idx: int,
  396. seq_group_metadata: SequenceGroupMetadata):
  397. """Compute context length, sequence length and tokens
  398. for the given sequence data.
  399. """
  400. seq_data = seq_group_metadata.seq_data[inter_data.seq_ids[seq_idx]]
  401. token_chunk_size = seq_group_metadata.token_chunk_size
  402. # Compute context length (the number of tokens that are
  403. # already computed) and sequence length (total number of tokens).
  404. seq_len = seq_data.get_len()
  405. if inter_data.is_prompt:
  406. context_len = seq_data.get_num_computed_tokens()
  407. else:
  408. # get_num_computed_tokens is incorrect for spec decoding.
  409. # So, we should have a special logic here.
  410. # TODO: Fix it.
  411. context_len = seq_len - 1
  412. seq_len = min(seq_len, context_len + token_chunk_size)
  413. # Compute tokens.
  414. if inter_data.is_prompt:
  415. tokens = seq_data.get_token_ids()
  416. if context_len != 0 or seq_len < len(tokens):
  417. tokens = tokens[context_len:seq_len]
  418. else:
  419. # Optimization. get_token_ids requires the entire copy of
  420. # tokens.
  421. tokens = seq_data.get_last_token_id()
  422. inter_data.seq_lens[seq_idx] = seq_len
  423. inter_data.orig_seq_lens[seq_idx] = seq_len
  424. inter_data.context_lens[seq_idx] = context_len
  425. if isinstance(tokens, list):
  426. inter_data.input_tokens[seq_idx].extend(tokens)
  427. else:
  428. inter_data.input_tokens[seq_idx].append(tokens)
  429. if (seq_len - context_len) == 1:
  430. inter_data.input_positions[seq_idx].append(seq_len - 1)
  431. else:
  432. inter_data.input_positions[seq_idx].extend(
  433. range(context_len, seq_len))
  434. inter_data.query_lens[
  435. seq_idx] = seq_len - context_len if inter_data.is_prompt else 1
  436. def _compute_for_prefix_cache_hit(
  437. self, inter_data: InterDataForSeqGroup, seq_idx: int,
  438. seq_group_metadata: SequenceGroupMetadata):
  439. """Check if hit prefix cache (i.e., some blocks are already computed).
  440. If hit, update input tokens and positions to only compute the
  441. remaining blocks.
  442. """
  443. computed_block_nums = inter_data.computed_block_nums
  444. # Note that prefix caching does not support sliding window.
  445. prefix_cache_hit = (computed_block_nums is not None
  446. and len(computed_block_nums) > 0
  447. and self.sliding_window is None
  448. and inter_data.is_prompt)
  449. inter_data.prefix_cache_hit = prefix_cache_hit
  450. if self.chunked_prefill_enabled and prefix_cache_hit:
  451. raise RuntimeError(
  452. "chunked prefill cannot be used with prefix caching now.")
  453. # If prefix cache is hit, advance context length to bypass
  454. # hit blocks. Accordingly, input tokens, position and query length
  455. # have to be updated.
  456. if prefix_cache_hit:
  457. assert computed_block_nums is not None
  458. context_len = len(computed_block_nums) * self.block_size
  459. inter_data.input_tokens[seq_idx] = inter_data.input_tokens[
  460. seq_idx][context_len:]
  461. inter_data.input_positions[seq_idx] = inter_data.input_positions[
  462. seq_idx][context_len:]
  463. inter_data.context_lens[seq_idx] = context_len
  464. inter_data.query_lens[
  465. seq_idx] = inter_data.seq_lens[seq_idx] - context_len
  466. def _compute_for_sliding_window(self, inter_data: InterDataForSeqGroup,
  467. seq_idx: int,
  468. seq_group_metadata: SequenceGroupMetadata):
  469. """Update seq_len and curr_sliding_window_block for the given
  470. sequence data (only required by decoding) if sliding window is enabled.
  471. """
  472. curr_sliding_window_block = 0
  473. sliding_seq_len = inter_data.seq_lens[seq_idx]
  474. if not inter_data.is_prompt and self.sliding_window is not None:
  475. # TODO: This is a hack to make sliding window work with
  476. # paged attn. We can remove it if we make paged attn kernel
  477. # to properly handle slinding window attn.
  478. curr_sliding_window_block = self.sliding_window_blocks
  479. if self.scheduler_config.use_v2_block_manager:
  480. # number of elements in last block
  481. suff_len = inter_data.seq_lens[seq_idx] % self.block_size
  482. sliding_seq_len = min(
  483. inter_data.seq_lens[seq_idx],
  484. self.block_aligned_sliding_window + suff_len)
  485. if suff_len > 0:
  486. curr_sliding_window_block += 1
  487. else:
  488. sliding_seq_len = min(inter_data.seq_lens[seq_idx],
  489. self.sliding_window)
  490. inter_data.curr_sliding_window_blocks[
  491. seq_idx] = curr_sliding_window_block
  492. inter_data.seq_lens[seq_idx] = sliding_seq_len
  493. def _compute_lora_input(self, inter_data: InterDataForSeqGroup,
  494. seq_idx: int,
  495. seq_group_metadata: SequenceGroupMetadata):
  496. """If LoRA is enabled, compute LoRA index and prompt mapping."""
  497. if not self.enable_lora:
  498. return
  499. lora_id = seq_group_metadata.lora_int_id
  500. if lora_id > 0:
  501. inter_data.lora_requests.add(seq_group_metadata.lora_request)
  502. query_len = inter_data.query_lens[seq_idx]
  503. inter_data.lora_index_mapping.append([lora_id] * query_len)
  504. inter_data.lora_prompt_mapping.append(
  505. [lora_id] *
  506. (query_len if seq_group_metadata.sampling_params
  507. and seq_group_metadata.sampling_params.prompt_logprobs is not None
  508. else 1))
  509. def _compute_prompt_adapter_input(
  510. self, inter_data: InterDataForSeqGroup,
  511. seq_group_metadata: SequenceGroupMetadata):
  512. """If prompt adapter is enabled, compute index and prompt mapping.
  513. """
  514. # Note that when is_prompt=True, we expect only one sequence
  515. # in the group.
  516. if not self.enable_prompt_adapter:
  517. return
  518. prompt_adapter_id = seq_group_metadata.prompt_adapter_id
  519. if prompt_adapter_id <= 0 or not inter_data.is_prompt:
  520. return
  521. # We expect only one sequence in the group when is_prompt=True.
  522. assert inter_data.n_seqs == 1
  523. query_len = inter_data.query_lens[0]
  524. inter_data.prompt_adapter_request = (
  525. seq_group_metadata.prompt_adapter_request)
  526. num_tokens = seq_group_metadata.prompt_adapter_num_virtual_tokens
  527. inter_data.prompt_adapter_index_mapping = [
  528. prompt_adapter_id
  529. ] * num_tokens + [0] * (query_len - num_tokens)
  530. inter_data.prompt_adapter_prompt_mapping = [prompt_adapter_id] * (
  531. query_len if seq_group_metadata.sampling_params
  532. and seq_group_metadata.sampling_params.prompt_logprobs else 1)
  533. def _compute_multi_modal_input(self, inter_data: InterDataForSeqGroup,
  534. seq_group_metadata: SequenceGroupMetadata):
  535. """If multi-modal data is given, add it to the input."""
  536. mm_data = seq_group_metadata.multi_modal_data
  537. if not mm_data:
  538. return
  539. mm_kwargs = self.multi_modal_input_mapper(mm_data)
  540. inter_data.multi_modal_inputs = mm_kwargs
  541. def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
  542. """Add a sequence group to the builder."""
  543. seq_ids = seq_group_metadata.seq_data.keys()
  544. n_seqs = len(seq_ids)
  545. is_prompt = seq_group_metadata.is_prompt
  546. if is_prompt:
  547. assert n_seqs == 1
  548. self.decode_only = False
  549. inter_data = self.init_cached_inter_data(
  550. request_id=seq_group_metadata.request_id,
  551. seq_ids=seq_ids,
  552. is_prompt=is_prompt,
  553. block_tables=seq_group_metadata.block_tables,
  554. computed_block_nums=seq_group_metadata.computed_block_nums,
  555. reinit=True,
  556. reinit_use_defaults=True)
  557. self.inter_data_list.append(inter_data)
  558. for seq_idx in range(n_seqs):
  559. for per_seq_fn in self.per_seq_compute_fns:
  560. per_seq_fn(inter_data, seq_idx, seq_group_metadata)
  561. for per_seq_group_fn in self.per_seq_group_compute_fns:
  562. per_seq_group_fn(inter_data, seq_group_metadata)
  563. def _use_captured_graph(self, batch_size: int,
  564. max_decode_seq_len: int) -> bool:
  565. return (self.decode_only and not self.runner.model_config.enforce_eager
  566. and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
  567. and max_decode_seq_len <= self.runner.max_seq_len_to_capture)
  568. def build(self) -> ModelInputForGPU:
  569. """Finalize the builder intermediate data and
  570. create on-device tensors.
  571. """
  572. # Combine and flatten intermediate data.
  573. input_tokens = []
  574. for inter_data in self.inter_data_list:
  575. for cur_input_tokens in inter_data.input_tokens:
  576. input_tokens.extend(cur_input_tokens)
  577. if not input_tokens:
  578. # This may happen when all prefill requests hit
  579. # prefix caching and there is no decode request.
  580. return self.model_input_cls()
  581. input_positions = []
  582. for inter_data in self.inter_data_list:
  583. for cur_input_positions in inter_data.input_positions:
  584. input_positions.extend(cur_input_positions)
  585. seq_lens = []
  586. max_decode_seq_len = 0
  587. for inter_data in self.inter_data_list:
  588. seq_lens.extend(inter_data.seq_lens)
  589. if not inter_data.is_prompt:
  590. max_decode_seq_len = max(max_decode_seq_len,
  591. max(inter_data.seq_lens))
  592. query_lens = []
  593. for inter_data in self.inter_data_list:
  594. query_lens.extend(inter_data.query_lens)
  595. # Mapping from request IDs to sequence IDs. Used for Jamba models
  596. # that manages the cache by itself.
  597. request_ids_to_seq_ids = {
  598. data.request_id: data.seq_ids
  599. for data in self.inter_data_list
  600. }
  601. batch_size = len(input_tokens)
  602. use_captured_graph = self._use_captured_graph(batch_size,
  603. max_decode_seq_len)
  604. # If cuda graph can be used, pad tensors accordingly.
  605. # See `capture_model` API for more details.
  606. # Aphrodite uses cuda graph only for decoding requests.
  607. cuda_graph_pad_size = -1
  608. if use_captured_graph:
  609. graph_batch_size = _get_graph_batch_size(batch_size)
  610. assert graph_batch_size >= batch_size
  611. cuda_graph_pad_size = graph_batch_size - batch_size
  612. batch_size = graph_batch_size
  613. # Tokens and positions.
  614. if cuda_graph_pad_size:
  615. input_tokens.extend(itertools.repeat(0, cuda_graph_pad_size))
  616. input_positions.extend(itertools.repeat(0, cuda_graph_pad_size))
  617. assert self.runner.device is not None
  618. input_tokens_tensor = async_tensor_h2d(input_tokens, torch.long,
  619. self.runner.device,
  620. self.runner.pin_memory)
  621. input_positions_tensor = async_tensor_h2d(input_positions, torch.long,
  622. self.runner.device,
  623. self.runner.pin_memory)
  624. # Sequence and query lengths.
  625. if cuda_graph_pad_size:
  626. seq_lens.extend(itertools.repeat(1, cuda_graph_pad_size))
  627. # Attention metadata.
  628. attn_metadata = self.attn_metadata_builder.build(
  629. seq_lens, query_lens, cuda_graph_pad_size, batch_size)
  630. # LoRA data.
  631. lora_requests = set()
  632. lora_mapping = None
  633. if self.enable_lora:
  634. lora_requests = set(r for data in self.inter_data_list
  635. for r in data.lora_requests)
  636. lora_index_mapping = flatten_2d_lists([
  637. flatten_2d_lists(inter_data.lora_index_mapping)
  638. for inter_data in self.inter_data_list
  639. ])
  640. if cuda_graph_pad_size:
  641. lora_index_mapping.extend(
  642. itertools.repeat(0, cuda_graph_pad_size))
  643. lora_prompt_mapping = flatten_2d_lists([
  644. flatten_2d_lists(inter_data.lora_prompt_mapping)
  645. for inter_data in self.inter_data_list
  646. ])
  647. lora_mapping = LoRAMapping(
  648. **dict(index_mapping=lora_index_mapping,
  649. prompt_mapping=lora_prompt_mapping,
  650. is_prefill=not self.decode_only))
  651. # Prompt adapter data.
  652. prompt_adapter_requests: Set[PromptAdapterRequest] = set()
  653. prompt_adapter_mapping = None
  654. if self.enable_prompt_adapter:
  655. prompt_adapter_requests = set(
  656. data.prompt_adapter_request for data in self.inter_data_list
  657. if data.prompt_adapter_request is not None)
  658. prompt_adapter_index_mapping = flatten_2d_lists([
  659. inter_data.prompt_adapter_index_mapping
  660. for inter_data in self.inter_data_list
  661. ])
  662. if cuda_graph_pad_size:
  663. prompt_adapter_index_mapping.extend(
  664. itertools.repeat(0, cuda_graph_pad_size))
  665. prompt_adapter_prompt_mapping = flatten_2d_lists([
  666. inter_data.prompt_adapter_prompt_mapping
  667. for inter_data in self.inter_data_list
  668. ])
  669. prompt_adapter_mapping = PromptAdapterMapping(
  670. prompt_adapter_index_mapping,
  671. prompt_adapter_prompt_mapping,
  672. )
  673. # Multi-modal data.
  674. multi_modal_inputs_list = [
  675. data.multi_modal_inputs for data in self.inter_data_list
  676. if data.multi_modal_inputs is not None
  677. ]
  678. multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list)
  679. return self.model_input_cls(
  680. input_tokens=input_tokens_tensor,
  681. input_positions=input_positions_tensor,
  682. attn_metadata=attn_metadata,
  683. seq_lens=seq_lens,
  684. query_lens=query_lens,
  685. lora_mapping=lora_mapping,
  686. lora_requests=lora_requests,
  687. multi_modal_kwargs=multi_modal_kwargs,
  688. request_ids_to_seq_ids=request_ids_to_seq_ids,
  689. finished_requests_ids=self.finished_requests_ids,
  690. prompt_adapter_mapping=prompt_adapter_mapping,
  691. prompt_adapter_requests=prompt_adapter_requests)
  692. class GPUModelRunnerBase(ModelRunnerBase[TModelInputForGPU]):
  693. """
  694. Helper class for shared methods between GPU model runners.
  695. """
  696. _model_input_cls: Type[TModelInputForGPU]
  697. _builder_cls: Type[ModelInputForGPUBuilder]
  698. def __init__(
  699. self,
  700. model_config: ModelConfig,
  701. parallel_config: ParallelConfig,
  702. scheduler_config: SchedulerConfig,
  703. device_config: DeviceConfig,
  704. cache_config: CacheConfig,
  705. load_config: LoadConfig,
  706. lora_config: Optional[LoRAConfig],
  707. kv_cache_dtype: Optional[str] = "auto",
  708. is_driver_worker: bool = False,
  709. prompt_adapter_config: Optional[PromptAdapterConfig] = None,
  710. multimodal_config: Optional[MultiModalConfig] = None,
  711. return_hidden_states: bool = False,
  712. input_registry: InputRegistry = INPUT_REGISTRY,
  713. mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
  714. tp_rank: int = 0,
  715. ):
  716. self.model_config = model_config
  717. self.parallel_config = parallel_config
  718. self.scheduler_config = scheduler_config
  719. self.device_config = device_config
  720. self.cache_config = cache_config
  721. self.lora_config = lora_config
  722. self.load_config = load_config
  723. self.is_driver_worker = is_driver_worker
  724. self.prompt_adapter_config = prompt_adapter_config
  725. self.multimodal_config = multimodal_config
  726. self.return_hidden_states = return_hidden_states
  727. self.device = self.device_config.device
  728. self.pin_memory = is_pin_memory_available()
  729. self.tp_rank = tp_rank
  730. self.kv_cache_dtype = kv_cache_dtype
  731. self.sliding_window = model_config.get_sliding_window()
  732. self.block_size = cache_config.block_size
  733. self.max_seq_len_to_capture = self.model_config.max_seq_len_to_capture
  734. self.graph_runners: List[Dict[int, CUDAGraphRunner]] = [
  735. {} for _ in range(self.parallel_config.pipeline_parallel_size)
  736. ]
  737. self.graph_memory_pool: Optional[Tuple[
  738. int, int]] = None # Set during graph capture.
  739. self.has_seqlen_agnostic = model_config.contains_seqlen_agnostic_layers(
  740. parallel_config)
  741. # When using CUDA graph, the input block tables must be padded to
  742. # max_seq_len_to_capture. However, creating the block table in
  743. # Python can be expensive. To optimize this, we cache the block table
  744. # in numpy and only copy the actual input content at every iteration.
  745. # The shape of the cached block table will be
  746. # (max batch size to capture, max context len to capture / block size).
  747. self.graph_block_tables = np.zeros(
  748. (max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()),
  749. dtype=np.int32)
  750. self.attn_backend = get_attn_backend(
  751. self.model_config.get_head_size(),
  752. self.model_config.get_sliding_window(),
  753. self.model_config.dtype,
  754. self.kv_cache_dtype,
  755. self.block_size,
  756. self.model_config.is_attention_free(),
  757. )
  758. # Multi-modal data support
  759. self.input_registry = input_registry
  760. self.mm_registry = mm_registry
  761. self.multi_modal_input_mapper = mm_registry \
  762. .create_input_mapper(model_config)
  763. # Lazy initialization
  764. self.model: nn.Module # Set after load_model
  765. # Set after load_model.
  766. self.lora_manager: Optional[LRUCacheWorkerLoRAManager] = None
  767. self.prompt_adapter_manager: LRUCacheWorkerPromptAdapterManager = None
  768. self.flashinfer_decode_workspace_buffer = None
  769. self.flashinfer_decode_wrapper = None
  770. self.flashinfer_prefill_workspace_buffer = None
  771. self.flashinfer_prefill_wrapper = None
  772. set_cpu_offload_max_bytes(
  773. int(self.cache_config.cpu_offload_gb * 1024**3))
  774. # Used to cache python objects
  775. self.inter_data_cache: Dict[int, PyObjectCache] = {}
  776. self.sampling_metadata_cache: SamplingMetadataCache = \
  777. SamplingMetadataCache()
  778. def load_model(self) -> None:
  779. tp = get_tensor_model_parallel_world_size()
  780. rank = get_tensor_model_parallel_rank()
  781. if rank == 0:
  782. logger.info(f"Loading model {self.model_config.model}...")
  783. with CudaMemoryProfiler() as m:
  784. # measure the time it takes to load the model
  785. start_time = time.time()
  786. self.model = get_model(model_config=self.model_config,
  787. device_config=self.device_config,
  788. load_config=self.load_config,
  789. lora_config=self.lora_config,
  790. multimodal_config=self.multimodal_config,
  791. parallel_config=self.parallel_config,
  792. scheduler_config=self.scheduler_config,
  793. cache_config=self.cache_config)
  794. end_time = time.time()
  795. self.model_memory_usage = m.consumed_memory
  796. total_time = end_time - start_time
  797. if tp > 1:
  798. if rank == 0:
  799. logger.info(f"Model loaded in {total_time:.2f} seconds.")
  800. logger.info(
  801. "Weights memory usage: "
  802. f"{self.model_memory_usage / float(2**30):.2f} GiB x {tp} ="
  803. f" {self.model_memory_usage * tp / float(2**30):.2f} GiB")
  804. else:
  805. logger.info(f"Model weights loaded in {total_time:.2f} seconds.")
  806. logger.info("Weights memory usage: "
  807. f"{self.model_memory_usage / float(2**30):.2f} GiB")
  808. if self.lora_config:
  809. assert supports_lora(self.model), "Model does not support LoRA"
  810. assert not supports_multimodal(
  811. self.model
  812. ), "To be tested: multimodal language model with LoRA settings."
  813. self.lora_manager = LRUCacheWorkerLoRAManager(
  814. self.scheduler_config.max_num_seqs,
  815. self.scheduler_config.max_num_batched_tokens,
  816. self.vocab_size,
  817. self.lora_config,
  818. self.device,
  819. self.model.embedding_modules,
  820. self.model.embedding_padding_modules,
  821. max_position_embeddings=self.model.config.
  822. max_position_embeddings,
  823. )
  824. self.model = self.lora_manager.create_lora_manager(self.model)
  825. if self.prompt_adapter_config:
  826. self.prompt_adapter_manager = LRUCacheWorkerPromptAdapterManager(
  827. self.scheduler_config.max_num_seqs,
  828. self.scheduler_config.max_num_batched_tokens, self.device,
  829. self.prompt_adapter_config)
  830. self.model = (
  831. self.prompt_adapter_manager.create_prompt_adapter_manager(
  832. self.model))
  833. if self.kv_cache_dtype == "fp8" and is_hip():
  834. # Currently only ROCm accepts kv-cache scaling factors
  835. # via quantization_param_path and this will be deprecated
  836. # in the future.
  837. if self.model_config.quantization_param_path is not None:
  838. if callable(getattr(self.model, "load_kv_cache_scales", None)):
  839. warnings.warn(
  840. "Loading kv cache scaling factor from JSON is "
  841. "deprecated and will be removed. Please include "
  842. "kv cache scaling factors in the model checkpoint.",
  843. FutureWarning,
  844. stacklevel=2)
  845. self.model.load_kv_cache_scales(
  846. self.model_config.quantization_param_path)
  847. logger.info(
  848. "Loaded KV cache scaling factors from ",
  849. f"{self.model_config.quantization_param_path}")
  850. else:
  851. raise RuntimeError(
  852. "Using FP8 KV cache and scaling factors provided but "
  853. f"model {self.model.__class__} does not support loading"
  854. " scaling factors.", )
  855. else:
  856. logger.warning(
  857. "Using FP8 KV cache but no scaling factors "
  858. "provided. Defaulting to scaling factors of 1.0. "
  859. "This may lead to less accurate results!")
  860. if APHRODITE_TEST_DYNAMO_GRAPH_CAPTURE:
  861. logger.info("Compiling the model using torch.compile...")
  862. start_time = time.time()
  863. self.model = torch.compile(self.model,
  864. fullgraph=True,
  865. backend="eager")
  866. end_time = time.time()
  867. logger.info(
  868. f"Model compiled in {end_time - start_time:.2f} seconds.")
  869. def get_model_memory_usage(self):
  870. return self.model_memory_usage
  871. def save_sharded_state(
  872. self,
  873. path: str,
  874. pattern: Optional[str] = None,
  875. max_size: Optional[int] = None,
  876. ) -> None:
  877. from aphrodite.modeling.model_loader.loader import ShardedStateLoader
  878. ShardedStateLoader.save_model(
  879. self.model,
  880. path,
  881. pattern=pattern,
  882. max_size=max_size,
  883. )
  884. def save_tensorized_model(
  885. self,
  886. tensorizer_config: TensorizerConfig,
  887. ) -> None:
  888. from aphrodite.modeling.model_loader.loader import TensorizerLoader
  889. TensorizerLoader.save_model(
  890. self.model,
  891. tensorizer_config=tensorizer_config,
  892. )
  893. def get_max_block_per_batch(self) -> int:
  894. block_size = self.block_size
  895. return (self.max_seq_len_to_capture + block_size - 1) // block_size
  896. def _prepare_model_input_tensors(
  897. self,
  898. seq_group_metadata_list: List[SequenceGroupMetadata],
  899. finished_requests_ids: Optional[List[str]] = None
  900. ) -> TModelInputForGPU:
  901. """Helper method to prepare the model input based on a given sequence
  902. group. Prepares metadata needed for the base model forward pass but not
  903. metadata for possible additional steps, e.g., sampling.
  904. The API assumes seq_group_metadata_list is sorted by prefill -> decode.
  905. The result tensors and data structure also batches input in prefill
  906. -> decode order. For example,
  907. - input_tokens[:num_prefill_tokens] contains prefill tokens.
  908. - input_tokens[num_prefill_tokens:] contains decode tokens.
  909. If cuda graph is required, this API automatically pads inputs.
  910. """
  911. builder = self._builder_cls(weakref.proxy(self), finished_requests_ids)
  912. for seq_group_metadata in seq_group_metadata_list:
  913. builder.add_seq_group(seq_group_metadata)
  914. builder.reset_cached_inter_data()
  915. return builder.build() # type: ignore
  916. @torch.inference_mode()
  917. def profile_run(self) -> None:
  918. rank = get_tensor_model_parallel_rank()
  919. if rank == 0:
  920. logger.info("Profiling peak memory usage...")
  921. # Enable top-k sampling to reflect the accurate memory usage.
  922. sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
  923. max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
  924. max_num_seqs = self.scheduler_config.max_num_seqs
  925. # This represents the maximum number of different requests
  926. # that will have unique loras, an therefore the max amount of memory
  927. # consumption create dummy lora request copies from the lora request
  928. # passed in, which contains a lora from the lora warmup path.
  929. dummy_lora_requests: List[LoRARequest] = []
  930. dummy_lora_requests_per_seq: List[LoRARequest] = []
  931. if self.lora_config:
  932. assert self.lora_manager is not None
  933. with self.lora_manager.dummy_lora_cache():
  934. for idx in range(self.lora_config.max_loras):
  935. lora_id = idx + 1
  936. dummy_lora_request = LoRARequest(
  937. lora_name=f"warmup_{lora_id}",
  938. lora_int_id=lora_id,
  939. lora_local_path="/not/a/real/path",
  940. )
  941. self.lora_manager.add_dummy_lora(dummy_lora_request,
  942. rank=LORA_WARMUP_RANK)
  943. dummy_lora_requests.append(dummy_lora_request)
  944. dummy_lora_requests_per_seq = [
  945. dummy_lora_requests[idx % len(dummy_lora_requests)]
  946. for idx in range(max_num_seqs)
  947. ]
  948. # Profile memory usage with max_num_sequences sequences and the total
  949. # number of tokens equal to max_num_batched_tokens.
  950. seqs: List[SequenceGroupMetadata] = []
  951. # Additional GPU memory may be needed for multi-modal encoding, which
  952. # needs to be accounted for when calculating the GPU blocks for
  953. # Aphrodite blocker manager.
  954. # To exercise the worst scenario for GPU memory consumption,
  955. # the number of seqs (batch_size) is chosen to maximize the number
  956. # of images processed.
  957. model_config = self.model_config
  958. mm_config = self.multimodal_config
  959. input_registry = self.input_registry
  960. mm_registry = self.mm_registry
  961. mm_registry.init_mm_limits_per_prompt(model_config, mm_config)
  962. max_mm_tokens = mm_registry.get_max_multimodal_tokens(model_config)
  963. if max_mm_tokens > 0:
  964. max_num_seqs_orig = max_num_seqs
  965. max_num_seqs = min(max_num_seqs,
  966. max_num_batched_tokens // max_mm_tokens)
  967. if max_num_seqs < 1:
  968. expr = (f"min({max_num_seqs_orig}, "
  969. f"{max_num_batched_tokens} // {max_mm_tokens})")
  970. logger.warning(
  971. f"Computed max_num_seqs ({expr}) to be less than 1. "
  972. "Setting it to the minimum value of 1.")
  973. max_num_seqs = 1
  974. batch_size = 0
  975. for group_id in range(max_num_seqs):
  976. seq_len = (max_num_batched_tokens // max_num_seqs +
  977. (group_id < max_num_batched_tokens % max_num_seqs))
  978. batch_size += seq_len
  979. seq_data, dummy_multi_modal_data = input_registry \
  980. .dummy_data_for_profiling(model_config, seq_len, mm_registry)
  981. seq = SequenceGroupMetadata(
  982. request_id=str(group_id),
  983. is_prompt=True,
  984. seq_data={group_id: seq_data},
  985. sampling_params=sampling_params,
  986. block_tables=None,
  987. lora_request=dummy_lora_requests_per_seq[group_id]
  988. if dummy_lora_requests_per_seq else None,
  989. multi_modal_data=dummy_multi_modal_data,
  990. )
  991. seqs.append(seq)
  992. # Run the model with the dummy inputs.
  993. num_layers = self.model_config.get_num_layers(self.parallel_config)
  994. kv_caches = [None] * num_layers
  995. finished_requests_ids = [seq.request_id for seq in seqs]
  996. model_input = self.prepare_model_input(
  997. seqs, finished_requests_ids=finished_requests_ids)
  998. intermediate_tensors = None
  999. if not get_pp_group().is_first_rank:
  1000. intermediate_tensors = self.model.make_empty_intermediate_tensors(
  1001. batch_size=batch_size,
  1002. dtype=self.model_config.dtype,
  1003. device=self.device)
  1004. self.execute_model(model_input, kv_caches, intermediate_tensors)
  1005. torch.cuda.synchronize()
  1006. return
  1007. def remove_all_loras(self):
  1008. if not self.lora_manager:
  1009. raise RuntimeError("LoRA is not enabled.")
  1010. self.lora_manager.remove_all_adapters()
  1011. def set_active_loras(self, lora_requests: Set[LoRARequest],
  1012. lora_mapping: LoRAMapping) -> None:
  1013. if not self.lora_manager:
  1014. raise RuntimeError("LoRA is not enabled.")
  1015. self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
  1016. def add_lora(self, lora_request: LoRARequest) -> bool:
  1017. if not self.lora_manager:
  1018. raise RuntimeError("LoRA is not enabled.")
  1019. return self.lora_manager.add_adapter(lora_request)
  1020. def remove_lora(self, lora_id: int) -> bool:
  1021. if not self.lora_manager:
  1022. raise RuntimeError("LoRA is not enabled.")
  1023. return self.lora_manager.remove_adapter(lora_id)
  1024. def pin_lora(self, lora_id: int) -> bool:
  1025. if not self.lora_manager:
  1026. raise RuntimeError("LoRA is not enabled.")
  1027. return self.lora_manager.pin_adapter(lora_id)
  1028. def list_loras(self) -> Set[int]:
  1029. if not self.lora_manager:
  1030. raise RuntimeError("LoRA is not enabled.")
  1031. return self.lora_manager.list_adapters()
  1032. def remove_all_prompt_adapters(self):
  1033. if not self.prompt_adapter_manager:
  1034. raise RuntimeError("PromptAdapter is not enabled.")
  1035. self.prompt_adapter_manager.remove_all_adapters()
  1036. def set_active_prompt_adapters(
  1037. self, prompt_adapter_requests: Set[PromptAdapterRequest],
  1038. prompt_adapter_mapping: PromptAdapterMapping) -> None:
  1039. if not self.prompt_adapter_manager:
  1040. raise RuntimeError("PromptAdapter is not enabled.")
  1041. self.prompt_adapter_manager.set_active_adapters(
  1042. prompt_adapter_requests, prompt_adapter_mapping)
  1043. def add_prompt_adapter(
  1044. self, prompt_adapter_request: PromptAdapterRequest) -> bool:
  1045. if not self.prompt_adapter_manager:
  1046. raise RuntimeError("PromptAdapter is not enabled.")
  1047. return self.prompt_adapter_manager.add_adapter(prompt_adapter_request)
  1048. def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
  1049. if not self.prompt_adapter_manager:
  1050. raise RuntimeError("PromptAdapter is not enabled.")
  1051. return self.prompt_adapter_manager.remove_adapter(prompt_adapter_id)
  1052. def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
  1053. if not self.prompt_adapter_manager:
  1054. raise RuntimeError("PromptAdapter is not enabled.")
  1055. return self.prompt_adapter_manager.pin_adapter(prompt_adapter_id)
  1056. def list_prompt_adapters(self) -> Set[int]:
  1057. if not self.prompt_adapter_manager:
  1058. raise RuntimeError("PromptAdapter is not enabled.")
  1059. return self.prompt_adapter_manager.list_adapters()
  1060. @torch.inference_mode()
  1061. def capture_model(self, kv_caches: List[List[torch.Tensor]]) -> None:
  1062. """Cuda graph capture a model.
  1063. Note that CUDA graph's performance gain is negligible if number
  1064. of batched tokens are larger than 200. And since CUDA graph
  1065. requires fixed sized tensors, supporting large/variable batch
  1066. size requires high GPU memory overhead. Thus, Aphrodite only captures
  1067. decoding requests. Mixed batch (chunked prefill + decoding) or
  1068. prefill requests are not captured.
  1069. Since it is used for decoding-only, it assumes there's only 1 token
  1070. per sequence in the batch.
  1071. """
  1072. tp_rank = get_tensor_model_parallel_rank()
  1073. assert not self.model_config.enforce_eager
  1074. if tp_rank == 0:
  1075. logger.info(
  1076. "Capturing the model for CUDA graphs. This may lead to "
  1077. "unexpected consequences if the model is not static. To "
  1078. "run the model in eager mode, set 'enforce_eager=True' or "
  1079. "use '--enforce-eager' in the CLI.")
  1080. logger.info(
  1081. "CUDA graphs can take additional 1~3 GiB memory per GPU. "
  1082. "If you are running out of memory, consider decreasing "
  1083. "`gpu_memory_utilization` or enforcing eager mode. "
  1084. "You can also reduce the `max_num_seqs` as needed "
  1085. "to decrease memory usage.")
  1086. start_time = time.perf_counter()
  1087. # Prepare dummy inputs. These will be reused for all batch sizes.
  1088. max_batch_size = max(_BATCH_SIZES_TO_CAPTURE)
  1089. input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda()
  1090. input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda()
  1091. slot_mapping = torch.empty(max_batch_size, dtype=torch.long).cuda()
  1092. slot_mapping.fill_(_PAD_SLOT_ID)
  1093. seq_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda()
  1094. block_tables = torch.from_numpy(self.graph_block_tables).cuda()
  1095. intermediate_inputs = None
  1096. if not get_pp_group().is_first_rank:
  1097. intermediate_inputs = self.model.make_empty_intermediate_tensors(
  1098. batch_size=max_batch_size,
  1099. dtype=self.model_config.dtype,
  1100. device=self.device)
  1101. # Prepare buffer for outputs. These will be reused for all batch sizes.
  1102. # It will be filled after the first graph capture.
  1103. hidden_or_intermediate_states: List[Optional[torch.Tensor]] = [
  1104. None
  1105. ] * self.parallel_config.pipeline_parallel_size
  1106. graph_batch_size = _get_graph_batch_size(
  1107. self.scheduler_config.max_num_seqs)
  1108. batch_size_capture_list = [
  1109. bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
  1110. ]
  1111. if self.attn_backend.get_name() == "flashinfer":
  1112. # For flashinfer, different batch sizes will share the
  1113. # same workspace buffer.
  1114. decode_workspace_buffer = \
  1115. torch.empty(FLASHINFER_WORKSPACE_BUFFER_SIZE,
  1116. dtype=torch.uint8,
  1117. device=self.device)
  1118. indices_buffer = torch.empty(max_batch_size *
  1119. self.cache_config.num_gpu_blocks,
  1120. dtype=torch.int32,
  1121. device=self.device)
  1122. indptr_buffer = torch.empty(max_batch_size + 1,
  1123. dtype=torch.int32,
  1124. device=self.device)
  1125. last_page_len_buffer = torch.empty(max_batch_size,
  1126. dtype=torch.int32,
  1127. device=self.device)
  1128. with graph_capture() as graph_capture_context:
  1129. # NOTE: Capturing the largest batch size first may help reduce the
  1130. # memory usage of CUDA graph.
  1131. for virtual_engine in range(
  1132. self.parallel_config.pipeline_parallel_size):
  1133. for batch_size in reversed(batch_size_capture_list):
  1134. if self.attn_backend.get_name() == "flashinfer":
  1135. _indptr_buffer = indptr_buffer[:batch_size + 1]
  1136. _last_page_len_buffer = last_page_len_buffer[:
  1137. batch_size]
  1138. num_qo_heads = (
  1139. self.model_config.get_num_attention_heads(
  1140. self.parallel_config, self.tp_rank))
  1141. num_kv_heads = self.model_config.get_num_kv_heads(
  1142. self.parallel_config, self.tp_rank)
  1143. if num_qo_heads // num_kv_heads >= 4:
  1144. use_tensor_cores = True
  1145. else:
  1146. use_tensor_cores = False
  1147. decode_wrapper = \
  1148. CUDAGraphBatchDecodeWithPagedKVCacheWrapper(
  1149. decode_workspace_buffer, _indptr_buffer,
  1150. indices_buffer, _last_page_len_buffer, "NHD",
  1151. use_tensor_cores)
  1152. kv_cache_dtype = get_kv_cache_torch_dtype(
  1153. self.kv_cache_dtype, self.model_config.dtype)
  1154. paged_kv_indptr_tensor_host = torch.arange(
  1155. 0, batch_size + 1, dtype=torch.int32)
  1156. paged_kv_indices_tensor_host = torch.arange(
  1157. 0, batch_size, dtype=torch.int32)
  1158. paged_kv_last_page_len_tensor_host = torch.full(
  1159. (batch_size, ), self.block_size, dtype=torch.int32)
  1160. query_start_loc_host = torch.arange(0,
  1161. batch_size + 1,
  1162. dtype=torch.int32)
  1163. attn_metadata = self.attn_backend.make_metadata(
  1164. num_prefills=0,
  1165. slot_mapping=slot_mapping[:batch_size],
  1166. num_prefill_tokens=0,
  1167. num_decode_tokens=batch_size,
  1168. max_prefill_seq_len=0,
  1169. block_tables=block_tables,
  1170. paged_kv_indptr=paged_kv_indptr_tensor_host,
  1171. paged_kv_indices=paged_kv_indices_tensor_host,
  1172. paged_kv_last_page_len=
  1173. paged_kv_last_page_len_tensor_host,
  1174. num_qo_heads=num_qo_heads,
  1175. num_kv_heads=num_kv_heads,
  1176. head_dim=self.model_config.get_head_size(),
  1177. page_size=self.block_size,
  1178. seq_start_loc=None,
  1179. query_start_loc=query_start_loc_host,
  1180. device=self.device,
  1181. data_type=kv_cache_dtype,
  1182. use_cuda_graph=True,
  1183. decode_wrapper=decode_wrapper,
  1184. prefill_wrapper=None)
  1185. attn_metadata.begin_forward()
  1186. else:
  1187. attn_metadata = self.attn_backend.make_metadata(
  1188. num_prefills=0,
  1189. num_prefill_tokens=0,
  1190. num_decode_tokens=batch_size,
  1191. slot_mapping=slot_mapping[:batch_size],
  1192. seq_lens=None,
  1193. seq_lens_tensor=seq_lens[:batch_size],
  1194. max_query_len=None,
  1195. max_prefill_seq_len=0,
  1196. max_decode_seq_len=self.max_seq_len_to_capture,
  1197. query_start_loc=None,
  1198. seq_start_loc=None,
  1199. context_lens_tensor=None,
  1200. block_tables=block_tables[:batch_size],
  1201. use_cuda_graph=True,
  1202. )
  1203. if self.lora_config:
  1204. lora_mapping = LoRAMapping(
  1205. **dict(index_mapping=[0] * batch_size,
  1206. prompt_mapping=[0] * batch_size,
  1207. is_prefill=False))
  1208. self.set_active_loras(set(), lora_mapping)
  1209. if self.prompt_adapter_config:
  1210. prompt_adapter_mapping = PromptAdapterMapping(
  1211. [-1] * batch_size,
  1212. [-1] * batch_size,
  1213. )
  1214. self.set_active_prompt_adapters(
  1215. set(), prompt_adapter_mapping)
  1216. graph_runner = CUDAGraphRunner(
  1217. self.model, self.attn_backend.get_name())
  1218. if self.attn_backend.get_name() == "flashinfer":
  1219. graph_runner.flashinfer_indptr_buffer = _indptr_buffer
  1220. graph_runner.flashinfer_indices_buffer = indices_buffer
  1221. graph_runner.flashinfer_last_page_len_buffer = \
  1222. _last_page_len_buffer
  1223. graph_runner.flashinfer_decode_workspace_buffer = \
  1224. decode_workspace_buffer
  1225. graph_runner.flashinfer_decode_wrapper = \
  1226. decode_wrapper
  1227. capture_inputs = {
  1228. "input_ids":
  1229. input_tokens[:batch_size],
  1230. "positions":
  1231. input_positions[:batch_size],
  1232. "hidden_or_intermediate_states":
  1233. hidden_or_intermediate_states[
  1234. virtual_engine] # type: ignore
  1235. [:batch_size]
  1236. if hidden_or_intermediate_states[virtual_engine]
  1237. is not None else None,
  1238. "intermediate_inputs":
  1239. intermediate_inputs[:batch_size]
  1240. if intermediate_inputs is not None else None,
  1241. "kv_caches":
  1242. kv_caches[virtual_engine],
  1243. "attn_metadata":
  1244. attn_metadata,
  1245. "memory_pool":
  1246. self.graph_memory_pool,
  1247. "stream":
  1248. graph_capture_context.stream
  1249. }
  1250. if self.has_seqlen_agnostic:
  1251. # Only used by Mamba-based models CUDA graph atm (Jamba)
  1252. capture_inputs.update({
  1253. "seqlen_agnostic_capture_inputs":
  1254. self.model.get_seqlen_agnostic_capture_inputs(
  1255. batch_size)
  1256. })
  1257. graph_runner.capture(**capture_inputs)
  1258. self.graph_memory_pool = graph_runner.graph.pool()
  1259. self.graph_runners[virtual_engine][batch_size] = (
  1260. graph_runner)
  1261. end_time = time.perf_counter()
  1262. elapsed_time = end_time - start_time
  1263. # This usually takes < 10 seconds.
  1264. if tp_rank == 0:
  1265. logger.info(f"Graph capturing finished in {elapsed_time:.2f} secs")
  1266. @property
  1267. def vocab_size(self) -> int:
  1268. return self.model_config.get_vocab_size()
  1269. class ModelRunner(GPUModelRunnerBase[ModelInputForGPUWithSamplingMetadata]):
  1270. """
  1271. GPU model runner with sampling step.
  1272. """
  1273. _model_input_cls: Type[ModelInputForGPUWithSamplingMetadata] = (
  1274. ModelInputForGPUWithSamplingMetadata)
  1275. _builder_cls: Type[ModelInputForGPUBuilder] = ModelInputForGPUBuilder
  1276. def make_model_input_from_broadcasted_tensor_dict(
  1277. self,
  1278. tensor_dict: Dict[str, Any],
  1279. ) -> ModelInputForGPUWithSamplingMetadata:
  1280. model_input = \
  1281. ModelInputForGPUWithSamplingMetadata.from_broadcasted_tensor_dict(
  1282. tensor_dict,
  1283. attn_backend=self.attn_backend,
  1284. )
  1285. return model_input
  1286. def prepare_model_input(
  1287. self,
  1288. seq_group_metadata_list: List[SequenceGroupMetadata],
  1289. virtual_engine: int = 0,
  1290. finished_requests_ids: Optional[List[str]] = None
  1291. ) -> ModelInputForGPUWithSamplingMetadata:
  1292. """Prepare the model input based on a given sequence group, including
  1293. metadata for the sampling step.
  1294. The API assumes seq_group_metadata_list is sorted by prefill -> decode.
  1295. The result tensors and data structure also batches input in prefill
  1296. -> decode order. For example,
  1297. - input_tokens[:num_prefill_tokens] contains prefill tokens.
  1298. - input_tokens[num_prefill_tokens:] contains decode tokens.
  1299. If cuda graph is required, this API automatically pads inputs.
  1300. """
  1301. model_input = self._prepare_model_input_tensors(
  1302. seq_group_metadata_list, finished_requests_ids)
  1303. if get_pp_group().is_last_rank:
  1304. # Sampling metadata is only required for the final pp group
  1305. generators = self.get_generators(finished_requests_ids)
  1306. sampling_metadata = SamplingMetadata.prepare(
  1307. seq_group_metadata_list, model_input.seq_lens,
  1308. model_input.query_lens, self.device, self.pin_memory,
  1309. generators, self.sampling_metadata_cache)
  1310. else:
  1311. sampling_metadata = None
  1312. is_prompt = (seq_group_metadata_list[0].is_prompt
  1313. if seq_group_metadata_list else None)
  1314. return dataclasses.replace(model_input,
  1315. sampling_metadata=sampling_metadata,
  1316. is_prompt=is_prompt,
  1317. virtual_engine=virtual_engine)
  1318. @torch.inference_mode()
  1319. def execute_model(
  1320. self,
  1321. model_input: ModelInputForGPUWithSamplingMetadata,
  1322. kv_caches: List[torch.Tensor],
  1323. intermediate_tensors: Optional[IntermediateTensors] = None,
  1324. num_steps: int = 1,
  1325. ) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]:
  1326. if num_steps > 1:
  1327. raise ValueError("num_steps > 1 is not supported in ModelRunner")
  1328. if self.lora_config:
  1329. assert model_input.lora_requests is not None
  1330. assert model_input.lora_mapping is not None
  1331. self.set_active_loras(model_input.lora_requests,
  1332. model_input.lora_mapping)
  1333. if self.prompt_adapter_config:
  1334. assert model_input.prompt_adapter_requests is not None
  1335. assert model_input.prompt_adapter_mapping is not None
  1336. self.set_active_prompt_adapters(
  1337. model_input.prompt_adapter_requests,
  1338. model_input.prompt_adapter_mapping)
  1339. if self.attn_backend.get_name() == "flashinfer":
  1340. assert model_input.attn_metadata is not None
  1341. assert model_input.input_tokens is not None
  1342. if self.flashinfer_decode_workspace_buffer is None:
  1343. self.flashinfer_decode_workspace_buffer = torch.empty(
  1344. FLASHINFER_WORKSPACE_BUFFER_SIZE,
  1345. dtype=torch.uint8,
  1346. device=self.device)
  1347. self.flashinfer_decode_wrapper = \
  1348. BatchDecodeWithPagedKVCacheWrapper(
  1349. self.flashinfer_decode_workspace_buffer, "NHD")
  1350. self.flashinfer_prefill_workspace_buffer = torch.empty(
  1351. FLASHINFER_WORKSPACE_BUFFER_SIZE,
  1352. dtype=torch.uint8,
  1353. device=self.device)
  1354. self.flashinfer_prefill_wrapper = \
  1355. BatchPrefillWithPagedKVCacheWrapper(
  1356. self.flashinfer_prefill_workspace_buffer, "NHD")
  1357. model_input.attn_metadata.prefill_wrapper = \
  1358. self.flashinfer_prefill_wrapper
  1359. if model_input.attn_metadata.use_cuda_graph:
  1360. batch_size = model_input.input_tokens.shape[0]
  1361. model_input.attn_metadata.decode_wrapper = self.graph_runners[
  1362. model_input.
  1363. virtual_engine][batch_size].flashinfer_decode_wrapper
  1364. else:
  1365. model_input.attn_metadata.decode_wrapper = \
  1366. self.flashinfer_decode_wrapper
  1367. model_input.attn_metadata.begin_forward()
  1368. # Currently cuda graph is only supported by the decode phase.
  1369. assert model_input.attn_metadata is not None
  1370. prefill_meta = model_input.attn_metadata.prefill_metadata
  1371. decode_meta = model_input.attn_metadata.decode_metadata
  1372. # TODO: We can remove this once all
  1373. # virtual engines share the same kv cache.
  1374. virtual_engine = model_input.virtual_engine
  1375. if prefill_meta is None and decode_meta.use_cuda_graph:
  1376. assert model_input.input_tokens is not None
  1377. graph_batch_size = model_input.input_tokens.shape[0]
  1378. model_executable = self.graph_runners[virtual_engine][
  1379. graph_batch_size]
  1380. else:
  1381. model_executable = self.model
  1382. multi_modal_kwargs = model_input.multi_modal_kwargs or {}
  1383. seqlen_agnostic_kwargs = {
  1384. "finished_requests_ids": model_input.finished_requests_ids,
  1385. "request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
  1386. } if self.has_seqlen_agnostic else {}
  1387. hidden_or_intermediate_states = model_executable(
  1388. input_ids=model_input.input_tokens,
  1389. positions=model_input.input_positions,
  1390. kv_caches=kv_caches,
  1391. attn_metadata=model_input.attn_metadata,
  1392. intermediate_tensors=intermediate_tensors,
  1393. **MultiModalInputs.as_kwargs(multi_modal_kwargs,
  1394. device=self.device),
  1395. **seqlen_agnostic_kwargs,
  1396. )
  1397. # Compute the logits in the last pipeline stage.
  1398. if not get_pp_group().is_last_rank:
  1399. return hidden_or_intermediate_states
  1400. logits = self.model.compute_logits(hidden_or_intermediate_states,
  1401. model_input.sampling_metadata)
  1402. if not self.is_driver_worker:
  1403. return []
  1404. # Sample the next token.
  1405. output: SamplerOutput = self.model.sample(
  1406. logits=logits,
  1407. sampling_metadata=model_input.sampling_metadata,
  1408. )
  1409. if self.return_hidden_states:
  1410. # we only need to pass hidden states of most recent token
  1411. assert model_input.sampling_metadata is not None
  1412. indices = model_input.sampling_metadata.selected_token_indices
  1413. if model_input.is_prompt:
  1414. hidden_states = hidden_or_intermediate_states.index_select(
  1415. 0, indices)
  1416. elif decode_meta.use_cuda_graph:
  1417. hidden_states = hidden_or_intermediate_states[:len(indices)]
  1418. else:
  1419. hidden_states = hidden_or_intermediate_states
  1420. output.hidden_states = hidden_states
  1421. return [output]
  1422. class CUDAGraphRunner:
  1423. def __init__(self, model: nn.Module, backend_name: str):
  1424. self.model = model
  1425. self.backend_name = backend_name
  1426. self.input_buffers: Dict[str, torch.Tensor] = {}
  1427. self.output_buffers: Dict[str, torch.Tensor] = {}
  1428. self._graph: Optional[torch.cuda.CUDAGraph] = None
  1429. self.flashinfer_decode_workspace_buffer: Optional[torch.Tensor] = None
  1430. self.flashinfer_indptr_buffer: Optional[torch.Tensor] = None
  1431. self.flashinfer_indices_buffer: Optional[torch.Tensor] = None
  1432. self.flashinfer_last_page_len_buffer: Optional[torch.Tensor] = None
  1433. self.flashinfer_decode_wrapper: Optional[
  1434. CUDAGraphBatchDecodeWithPagedKVCacheWrapper] = None
  1435. @property
  1436. def graph(self):
  1437. assert self._graph is not None
  1438. return self._graph
  1439. def capture(
  1440. self,
  1441. input_ids: torch.Tensor,
  1442. positions: torch.Tensor,
  1443. hidden_or_intermediate_states: Optional[Union[IntermediateTensors,
  1444. torch.Tensor]],
  1445. intermediate_inputs: Optional[IntermediateTensors],
  1446. kv_caches: List[torch.Tensor],
  1447. attn_metadata: AttentionMetadata,
  1448. memory_pool: Optional[Tuple[int, int]],
  1449. stream: torch.cuda.Stream,
  1450. **kwargs,
  1451. ) -> Union[torch.Tensor, IntermediateTensors]:
  1452. assert self._graph is None
  1453. # Run the model a few times without capturing the graph.
  1454. # This is to make sure that the captured graph does not include the
  1455. # kernel launches for initial benchmarking (e.g., Triton autotune).
  1456. # Note one iteration is not enough for torch.jit.script
  1457. for _ in range(_NUM_WARMUP_ITERS):
  1458. self.model(
  1459. input_ids,
  1460. positions,
  1461. kv_caches,
  1462. attn_metadata,
  1463. intermediate_inputs,
  1464. **kwargs,
  1465. )
  1466. torch.cuda.synchronize()
  1467. # Capture the graph.
  1468. self._graph = torch.cuda.CUDAGraph()
  1469. with torch.cuda.graph(self._graph, pool=memory_pool, stream=stream):
  1470. output_hidden_or_intermediate_states = self.model(
  1471. input_ids,
  1472. positions,
  1473. kv_caches,
  1474. attn_metadata,
  1475. intermediate_inputs,
  1476. **kwargs,
  1477. )
  1478. if hidden_or_intermediate_states is not None:
  1479. if get_pp_group().is_last_rank:
  1480. hidden_or_intermediate_states.copy_(
  1481. output_hidden_or_intermediate_states)
  1482. else:
  1483. for key in hidden_or_intermediate_states.tensors:
  1484. hidden_or_intermediate_states[key].copy_(
  1485. output_hidden_or_intermediate_states[key])
  1486. else:
  1487. hidden_or_intermediate_states = (
  1488. output_hidden_or_intermediate_states)
  1489. del output_hidden_or_intermediate_states
  1490. # make sure `output_hidden_states` is deleted
  1491. # in the graph's memory pool
  1492. gc.collect()
  1493. torch.cuda.synchronize()
  1494. # Save the input and output buffers.
  1495. if self.backend_name == "flashinfer":
  1496. self.input_buffers = {
  1497. "input_ids": input_ids,
  1498. "positions": positions,
  1499. "kv_caches": kv_caches,
  1500. "slot_mapping": attn_metadata.slot_mapping,
  1501. **kwargs,
  1502. }
  1503. else:
  1504. self.input_buffers = {
  1505. "input_ids": input_ids,
  1506. "positions": positions,
  1507. "kv_caches": kv_caches,
  1508. "slot_mapping": attn_metadata.slot_mapping,
  1509. "seq_lens_tensor":
  1510. attn_metadata.decode_metadata.seq_lens_tensor,
  1511. "block_tables": attn_metadata.decode_metadata.block_tables,
  1512. **kwargs,
  1513. }
  1514. if intermediate_inputs is not None:
  1515. self.input_buffers.update(intermediate_inputs.tensors)
  1516. if get_pp_group().is_last_rank:
  1517. self.output_buffers = {
  1518. "hidden_states": hidden_or_intermediate_states
  1519. }
  1520. else:
  1521. self.output_buffers = hidden_or_intermediate_states
  1522. return hidden_or_intermediate_states
  1523. def forward(
  1524. self,
  1525. input_ids: torch.Tensor,
  1526. positions: torch.Tensor,
  1527. kv_caches: List[torch.Tensor],
  1528. attn_metadata: AttentionMetadata,
  1529. intermediate_tensors: Optional[IntermediateTensors],
  1530. **kwargs,
  1531. ) -> torch.Tensor:
  1532. # KV caches are fixed tensors, so we don't need to copy them.
  1533. del kv_caches
  1534. # Copy the input tensors to the input buffers.
  1535. self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
  1536. self.input_buffers["positions"].copy_(positions, non_blocking=True)
  1537. if self.backend_name != "No attention":
  1538. self.input_buffers["slot_mapping"].copy_(
  1539. attn_metadata.slot_mapping, non_blocking=True)
  1540. if self.backend_name != "flashinfer":
  1541. self.input_buffers["seq_lens_tensor"].copy_(
  1542. attn_metadata.decode_metadata.seq_lens_tensor,
  1543. non_blocking=True)
  1544. self.input_buffers["block_tables"].copy_(
  1545. attn_metadata.decode_metadata.block_tables, non_blocking=True)
  1546. if "seqlen_agnostic_capture_inputs" in self.input_buffers:
  1547. self.model.copy_inputs_before_cuda_graphs(self.input_buffers,
  1548. **kwargs)
  1549. if intermediate_tensors is not None:
  1550. for key in intermediate_tensors.tensors:
  1551. self.input_buffers[key].copy_(intermediate_tensors[key],
  1552. non_blocking=True)
  1553. # Run the graph.
  1554. self.graph.replay()
  1555. # Return the output tensor.
  1556. if get_pp_group().is_last_rank:
  1557. return self.output_buffers["hidden_states"]
  1558. return self.output_buffers
  1559. def __call__(self, *args, **kwargs):
  1560. return self.forward(*args, **kwargs)
  1561. def _get_graph_batch_size(batch_size: int) -> int:
  1562. """Returns the padded batch size given actual batch size.
  1563. Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT,
  1564. 2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT...
  1565. """
  1566. if batch_size <= 2:
  1567. return batch_size
  1568. elif batch_size <= 4:
  1569. return 4
  1570. else:
  1571. return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) //
  1572. _BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT)