123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- from typing import List, Optional, Tuple, Type
- import numpy as np
- import pytest
- from transformers import AutoModel, AutoTokenizer, BatchEncoding
- from aphrodite.common.sequence import SampleLogprobs
- from aphrodite.common.utils import STR_DTYPE_TO_TORCH_DTYPE
- from ..conftest import AphroditeRunner, HfRunner
- from .utils import check_logprobs_close
- pytestmark = pytest.mark.vlm
- MODEL_NAME = "fixie-ai/ultravox-v0_3"
- AudioTuple = Tuple[np.ndarray, int]
- APHRODITE_PLACEHOLDER = "<|reserved_special_token_0|>"
- HF_PLACEHOLDER = "<|audio|>"
- @pytest.fixture(scope="session")
- def audio_assets():
- from aphrodite.assets.audio import AudioAsset
- return [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")]
- @pytest.fixture(scope="module", params=("mary_had_lamb", "winning_call"))
- def audio(request):
- from aphrodite.assets.audio import AudioAsset
- return AudioAsset(request.param)
- def _get_prompt(audio_count, question, placeholder):
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
- placeholder = f"{placeholder}\n" * audio_count
- return tokenizer.apply_chat_template([{
- 'role': 'user',
- 'content': f"{placeholder}{question}"
- }],
- tokenize=False,
- add_generation_prompt=True)
- def aphrodite_to_hf_output(aphrodite_output: Tuple[List[int], str,
- Optional[SampleLogprobs]],
- model: str):
- """Sanitize aphrodite output to be comparable with hf output."""
- output_ids, output_str, out_logprobs = aphrodite_output
- tokenizer = AutoTokenizer.from_pretrained(model)
- eos_token_id = tokenizer.eos_token_id
- hf_output_ids = output_ids[:]
- hf_output_str = output_str
- if hf_output_ids[-1] == eos_token_id:
- hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
- return hf_output_ids, hf_output_str, out_logprobs
- def run_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- prompts_and_audios: List[Tuple[str, str, AudioTuple]],
- model: str,
- *,
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- """Inference result should be the same between hf and aphrodite."""
- torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]
- # NOTE: take care of the order. run Aphrodite first, and then run HF.
- # Aphrodite needs a fresh new process without cuda initialization.
- # if we run HF first, the cuda initialization will be done and it
- # will hurt multiprocessing backend with fork method (the default method).
- with aphrodite_runner(model,
- dtype=dtype,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True) as aphrodite_model:
- aphrodite_outputs_per_audio = [
- aphrodite_model.generate_greedy_logprobs([aphrodite_prompt],
- max_tokens,
- num_logprobs=num_logprobs,
- audios=[audio])
- for aphrodite_prompt, _, audio in prompts_and_audios
- ]
- def process(hf_inputs: BatchEncoding):
- hf_inputs["audio_values"] = hf_inputs["audio_values"] \
- .to(torch_dtype) # type: ignore
- return hf_inputs
- with hf_runner(model,
- dtype=dtype,
- postprocess_inputs=process,
- auto_cls=AutoModel) as hf_model:
- import librosa
- hf_outputs_per_audio = [
- hf_model.generate_greedy_logprobs_limit(
- [hf_prompt],
- max_tokens,
- num_logprobs=num_logprobs,
- audios=[(librosa.resample(audio[0],
- orig_sr=audio[1],
- target_sr=16000), 16000)])
- for _, hf_prompt, audio in prompts_and_audios
- ]
- for hf_outputs, aphrodite_outputs in zip(hf_outputs_per_audio,
- aphrodite_outputs_per_audio):
- check_logprobs_close(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=[
- aphrodite_to_hf_output(aphrodite_output, model)
- for aphrodite_output in aphrodite_outputs
- ],
- name_0="hf",
- name_1="aphrodite",
- )
- def run_multi_audio_test(
- aphrodite_runner: Type[AphroditeRunner],
- prompts_and_audios: List[Tuple[str, List[AudioTuple]]],
- model: str,
- *,
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- with aphrodite_runner(model,
- dtype=dtype,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True,
- limit_mm_per_prompt={
- "audio":
- max((len(audio) for _, audio in prompts_and_audios))
- }) as aphrodite_model:
- aphrodite_outputs = aphrodite_model.generate_greedy_logprobs(
- [prompt for prompt, _ in prompts_and_audios],
- max_tokens,
- num_logprobs=num_logprobs,
- audios=[audios for _, audios in prompts_and_audios])
- # The HuggingFace model doesn't support multiple audios yet, so
- # just assert that some tokens were generated.
- assert all(tokens for tokens, *_ in aphrodite_outputs)
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- def test_models(hf_runner, aphrodite_runner, audio, dtype: str, max_tokens: int,
- num_logprobs: int) -> None:
- aphrodite_prompt = _get_prompt(1, "Describe the audio above.",
- APHRODITE_PLACEHOLDER)
- hf_prompt = _get_prompt(1, "Describe the audio above.", HF_PLACEHOLDER)
- run_test(
- hf_runner,
- aphrodite_runner,
- [(aphrodite_prompt, hf_prompt, audio.audio_and_sample_rate)],
- MODEL_NAME,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- tensor_parallel_size=1,
- )
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- def test_models_with_multiple_audios(aphrodite_runner, audio_assets, dtype: str,
- max_tokens: int,
- num_logprobs: int) -> None:
- aphrodite_prompt = _get_prompt(len(audio_assets),
- "Describe each of the audios above.",
- APHRODITE_PLACEHOLDER)
- run_multi_audio_test(
- aphrodite_runner,
- [(aphrodite_prompt, [audio.audio_and_sample_rate
- for audio in audio_assets])],
- MODEL_NAME,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- tensor_parallel_size=1,
- )
|