xpu_model_runner.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. from dataclasses import dataclass
  2. from typing import (TYPE_CHECKING, Any, Dict, List, Mapping, Optional, Tuple,
  3. Type, Union)
  4. import torch
  5. import torch.nn as nn
  6. from loguru import logger
  7. from aphrodite.attention import get_attn_backend
  8. from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
  9. LoRAConfig, ModelConfig, ParallelConfig,
  10. SchedulerConfig, VisionLanguageConfig)
  11. from aphrodite.common.sampling_params import SamplingParams
  12. from aphrodite.common.sequence import (IntermediateTensors, SamplerOutput,
  13. SequenceGroupMetadata)
  14. from aphrodite.common.utils import CudaMemoryProfiler, make_tensor_with_pad
  15. from aphrodite.distributed import broadcast_tensor_dict
  16. from aphrodite.inputs import INPUT_REGISTRY
  17. from aphrodite.modeling.model_loader import get_model
  18. from aphrodite.multimodal import (MULTIMODAL_REGISTRY, BatchedTensors,
  19. MultiModalInputs)
  20. from aphrodite.task_handler.model_runner import (AttentionMetadata,
  21. SamplingMetadata)
  22. from aphrodite.task_handler.model_runner_base import (
  23. ModelRunnerBase, ModelRunnerInputBase,
  24. _add_attn_metadata_broadcastable_dict,
  25. _add_sampling_metadata_broadcastable_dict,
  26. _init_attn_metadata_from_tensor_dict,
  27. _init_sampling_metadata_from_tensor_dict)
  28. if TYPE_CHECKING:
  29. from aphrodite.attention.backends.abstract import AttentionBackend
  30. _PAD_SLOT_ID = -1
  31. _BATCH_SIZE_ALIGNMENT = 8
  32. _BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
  33. _BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
  34. ]
  35. @dataclass(frozen=True)
  36. class ModelInputForXPU(ModelRunnerInputBase):
  37. """
  38. Used by the NeuronModelRunner.
  39. """
  40. input_tokens: Optional[torch.Tensor] = None
  41. input_positions: Optional[torch.Tensor] = None
  42. attn_metadata: Optional["AttentionMetadata"] = None
  43. sampling_metadata: Optional["SamplingMetadata"] = None
  44. multi_modal_kwargs: Optional[Mapping[str, BatchedTensors]] = None
  45. def as_broadcastable_tensor_dict(
  46. self) -> Dict[str, Union[int, torch.Tensor]]:
  47. tensor_dict = {
  48. "input_tokens": self.input_tokens,
  49. "input_positions": self.input_positions,
  50. }
  51. _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
  52. _add_sampling_metadata_broadcastable_dict(tensor_dict,
  53. self.sampling_metadata)
  54. return tensor_dict
  55. @classmethod
  56. def from_broadcasted_tensor_dict(
  57. cls: Type["ModelInputForXPU"],
  58. tensor_dict: Dict[str, Any],
  59. attn_backend: Optional["AttentionBackend"] = None,
  60. ) -> "ModelInputForXPU":
  61. tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
  62. if attn_backend is not None:
  63. tensor_dict = _init_attn_metadata_from_tensor_dict(
  64. attn_backend, tensor_dict)
  65. return cls(**tensor_dict)
  66. class XPUModelRunner(ModelRunnerBase[ModelInputForXPU]):
  67. def __init__(
  68. self,
  69. model_config: ModelConfig,
  70. parallel_config: ParallelConfig,
  71. scheduler_config: SchedulerConfig,
  72. device_config: DeviceConfig,
  73. cache_config: CacheConfig,
  74. load_config: LoadConfig,
  75. lora_config: Optional[LoRAConfig],
  76. vision_language_config: Optional[VisionLanguageConfig],
  77. kv_cache_dtype: Optional[str] = "auto",
  78. is_driver_worker: bool = False,
  79. *args,
  80. **kwargs,
  81. ):
  82. self.model_config = model_config
  83. self.parallel_config = parallel_config
  84. self.scheduler_config = scheduler_config
  85. self.lora_config = lora_config
  86. self.load_config = load_config
  87. self.cache_config = cache_config
  88. self.vision_language_config = vision_language_config
  89. self.is_driver_worker = is_driver_worker
  90. self.sliding_window = model_config.get_sliding_window()
  91. self.device_config = device_config
  92. self.device = self.device_config.device
  93. self.kv_cache_dtype = kv_cache_dtype
  94. self.block_size = cache_config.block_size
  95. self.max_context_len_to_capture = (
  96. self.model_config.max_context_len_to_capture
  97. if self.model_config is not None else 0)
  98. self.attn_backend = get_attn_backend(
  99. self.model_config.get_num_attention_heads(self.parallel_config),
  100. self.model_config.get_head_size(),
  101. self.model_config.get_num_kv_heads(self.parallel_config),
  102. self.model_config.get_sliding_window(),
  103. self.model_config.dtype,
  104. self.kv_cache_dtype,
  105. self.block_size,
  106. )
  107. # Multi-modal data support
  108. self.multi_modal_input_mapper = MULTIMODAL_REGISTRY \
  109. .create_input_mapper(self.model_config)
  110. # Lazy initialization.
  111. self.model: nn.Module # Set after init_Model
  112. def load_model(self) -> None:
  113. with CudaMemoryProfiler() as m:
  114. self.model = get_model(
  115. model_config=self.model_config,
  116. device_config=self.device_config,
  117. load_config=self.load_config,
  118. lora_config=self.lora_config,
  119. vision_language_config=self.vision_language_config,
  120. parallel_config=self.parallel_config,
  121. scheduler_config=self.scheduler_config,
  122. cache_config=self.cache_config,
  123. )
  124. self.model_memory_usage = m.consumed_memory
  125. logger.info("Loading model weights took "
  126. f"{self.model_memory_usage / float(2**30):.4f} GB")
  127. @property
  128. def vocab_size(self) -> int:
  129. return self.model_config.get_vocab_size()
  130. @torch.inference_mode()
  131. def profile_run(self) -> None:
  132. # Enable top-k sampling to reflect the accurate memory usage.
  133. sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
  134. max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
  135. max_num_seqs = self.scheduler_config.max_num_seqs
  136. # Profile memory usage with max_num_sequences sequences and the total
  137. # number of tokens equal to max_num_batched_tokens.
  138. seqs: List[SequenceGroupMetadata] = []
  139. # Additional GPU memory may be needed for vision encoding, which needs
  140. # to be accounted for when calculating the GPU blocks for
  141. # Aphrodite blocker manager.
  142. # To exercise the worst scenario for GPU memory consumption,
  143. # the number of seqs (batch_size) is chosen to maximize the number
  144. # of images processed.
  145. model_config = self.model_config
  146. vlm_config = self.vision_language_config
  147. if vlm_config:
  148. max_num_seqs = min(
  149. max_num_seqs,
  150. int(max_num_batched_tokens / vlm_config.image_feature_size))
  151. for group_id in range(max_num_seqs):
  152. seq_len = (max_num_batched_tokens // max_num_seqs +
  153. (group_id < max_num_batched_tokens % max_num_seqs))
  154. seq_data, dummy_multi_modal_data = INPUT_REGISTRY \
  155. .dummy_data_for_profiling(model_config, seq_len)
  156. # Having more tokens is over-conservative but otherwise fine
  157. assert len(seq_data.prompt_token_ids) >= seq_len, (
  158. f"Expected at least {seq_len} dummy tokens for profiling, "
  159. f"but got: {len(seq_data.prompt_token_ids)}")
  160. seq = SequenceGroupMetadata(
  161. request_id=str(group_id),
  162. is_prompt=True,
  163. seq_data={group_id: seq_data},
  164. sampling_params=sampling_params,
  165. block_tables=None,
  166. lora_request=None,
  167. multi_modal_data=dummy_multi_modal_data,
  168. )
  169. seqs.append(seq)
  170. # Run the model with the dummy inputs.
  171. num_layers = self.model_config.get_num_layers(self.parallel_config)
  172. kv_caches = [None] * num_layers
  173. model_input = self.prepare_model_input(seqs)
  174. self.execute_model(model_input, kv_caches)
  175. torch.xpu.synchronize()
  176. return
  177. def make_model_input_from_broadcasted_tensor_dict(
  178. self, tensor_dict: Dict[str, Any]) -> ModelInputForXPU:
  179. return (ModelInputForXPU.from_broadcasted_tensor_dict(
  180. tensor_dict,
  181. attn_backend=self.attn_backend,
  182. ))
  183. def prepare_model_input(
  184. self,
  185. seq_group_metadata_list: List[SequenceGroupMetadata],
  186. virtual_engine: int = 0,
  187. finished_requests_ids: Optional[List[str]] = None
  188. ) -> ModelInputForXPU:
  189. multi_modal_kwargs = None
  190. if self.is_driver_worker:
  191. # NOTE: We assume that all sequences in the group are all prompts or
  192. # all decodes.
  193. is_prompt = seq_group_metadata_list[0].is_prompt
  194. # Prepare input tensors.
  195. if is_prompt:
  196. (input_tokens, input_positions, attn_metadata, seq_lens,
  197. multi_modal_kwargs
  198. ) = self._prepare_prompt(seq_group_metadata_list)
  199. else:
  200. (input_tokens, input_positions,
  201. attn_metadata) = self._prepare_decode(seq_group_metadata_list)
  202. seq_lens = []
  203. sampling_metadata = SamplingMetadata.prepare(
  204. seq_group_metadata_list,
  205. seq_lens,
  206. # subquery_lens is not needed if chunked prefill is not
  207. # supported. Since CPU worker doesn't support chunked prefill
  208. # just use seq_lens instead.
  209. seq_lens,
  210. self.device,
  211. pin_memory=False)
  212. # Broadcast the metadata.
  213. metadata_dict = {
  214. "input_tokens": input_tokens,
  215. "input_positions": input_positions,
  216. "selected_token_indices":
  217. sampling_metadata.selected_token_indices,
  218. "multi_modal_kwargs": multi_modal_kwargs,
  219. }
  220. metadata_dict.update(attn_metadata.asdict_zerocopy())
  221. broadcast_tensor_dict(metadata_dict, src=0)
  222. else:
  223. metadata_dict = broadcast_tensor_dict(src=0)
  224. input_tokens = metadata_dict.pop("input_tokens")
  225. input_positions = metadata_dict.pop("input_positions")
  226. selected_token_indices = metadata_dict.pop(
  227. "selected_token_indices")
  228. multi_modal_kwargs = metadata_dict.pop("multi_modal_kwargs")
  229. attn_metadata = self.attn_backend.make_metadata(**metadata_dict)
  230. sampling_metadata = SamplingMetadata(
  231. seq_groups=None,
  232. selected_token_indices=selected_token_indices,
  233. categorized_sample_indices=None,
  234. num_prompts=0,
  235. )
  236. return ModelInputForXPU(input_tokens=input_tokens,
  237. input_positions=input_positions,
  238. attn_metadata=attn_metadata,
  239. sampling_metadata=sampling_metadata,
  240. multi_modal_kwargs=multi_modal_kwargs)
  241. def _prepare_decode(
  242. self,
  243. seq_group_metadata_list: List[SequenceGroupMetadata],
  244. ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
  245. assert len(seq_group_metadata_list) > 0
  246. input_tokens: List[int] = []
  247. input_positions: List[int] = []
  248. slot_mapping: List[int] = []
  249. seq_lens: List[int] = []
  250. block_tables: List[List[int]] = []
  251. for seq_group_metadata in seq_group_metadata_list:
  252. assert not seq_group_metadata.is_prompt
  253. assert seq_group_metadata.token_chunk_size == 1
  254. seq_ids = list(seq_group_metadata.seq_data.keys())
  255. for seq_id in seq_ids:
  256. seq_data = seq_group_metadata.seq_data[seq_id]
  257. generation_token = seq_data.get_last_token_id()
  258. input_tokens.append(generation_token)
  259. seq_len = seq_data.get_len()
  260. position = seq_len - 1
  261. input_positions.append(position)
  262. seq_len = seq_len if self.sliding_window is None else min(
  263. seq_len, self.sliding_window)
  264. seq_lens.append(seq_len)
  265. block_table = seq_group_metadata.block_tables[seq_id]
  266. block_number = block_table[position // self.block_size]
  267. block_offset = position % self.block_size
  268. slot = block_number * self.block_size + block_offset
  269. slot_mapping.append(slot)
  270. if self.sliding_window is not None:
  271. sliding_window_blocks = (self.sliding_window //
  272. self.block_size)
  273. block_table = block_table[-sliding_window_blocks:]
  274. block_tables.append(block_table)
  275. max_decode_seq_len = max(seq_lens)
  276. input_tokens = torch.tensor(input_tokens,
  277. dtype=torch.long,
  278. device=self.device)
  279. input_positions = torch.tensor(input_positions,
  280. dtype=torch.long,
  281. device=self.device)
  282. slot_mapping = torch.tensor(slot_mapping,
  283. dtype=torch.long,
  284. device=self.device)
  285. seq_lens_tensor = torch.tensor(seq_lens,
  286. dtype=torch.int,
  287. device=self.device)
  288. max_block_table_len = max(
  289. len(block_table) for block_table in block_tables)
  290. block_tables = make_tensor_with_pad(
  291. block_tables,
  292. max_len=max_block_table_len,
  293. pad=0,
  294. dtype=torch.int,
  295. device=self.device,
  296. )
  297. attn_metadata = self.attn_backend.make_metadata(
  298. is_prompt=False,
  299. slot_mapping=slot_mapping,
  300. seq_lens=seq_lens,
  301. seqlen_q=None,
  302. max_seqlen=None,
  303. seq_lens_tensor=seq_lens_tensor,
  304. max_decode_seq_len=max_decode_seq_len,
  305. num_prefill_tokens=0,
  306. num_decode_tokens=len(input_tokens),
  307. num_prefills=0,
  308. block_tables=block_tables,
  309. )
  310. return (
  311. input_tokens,
  312. input_positions,
  313. attn_metadata,
  314. )
  315. @torch.inference_mode()
  316. def execute_model(
  317. self,
  318. model_input: ModelInputForXPU,
  319. kv_caches: List[torch.Tensor],
  320. intermediate_tensors: Optional[IntermediateTensors] = None,
  321. num_steps: int = 1,
  322. ) -> Optional[List[SamplerOutput]]:
  323. if num_steps > 1:
  324. raise ValueError(
  325. "XPUModelRunner does not support multi-step execution.")
  326. model_executable = self.model
  327. execute_model_kwargs = {
  328. "input_ids": model_input.input_tokens,
  329. "positions": model_input.input_positions,
  330. "kv_caches": kv_caches,
  331. "attn_metadata": model_input.attn_metadata,
  332. **(model_input.multi_modal_kwargs or {}),
  333. }
  334. hidden_states = model_executable(**execute_model_kwargs)
  335. # Compute the logits.
  336. logits = self.model.compute_logits(hidden_states,
  337. model_input.sampling_metadata)
  338. # Only perform sampling in the driver worker.
  339. if not self.is_driver_worker:
  340. return []
  341. # Sample the next token.
  342. output = self.model.sample(
  343. logits=logits,
  344. sampling_metadata=model_input.sampling_metadata,
  345. )
  346. return [output]
  347. def _prepare_prompt(
  348. self,
  349. seq_group_metadata_list: List[SequenceGroupMetadata],
  350. ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int],
  351. Mapping[str, BatchedTensors]]:
  352. assert len(seq_group_metadata_list) > 0
  353. input_tokens: List[int] = []
  354. input_positions: List[int] = []
  355. slot_mapping: List[int] = []
  356. seq_lens: List[int] = []
  357. multi_modal_inputs_list: List[MultiModalInputs] = []
  358. for seq_group_metadata in seq_group_metadata_list:
  359. assert seq_group_metadata.is_prompt
  360. seq_ids = list(seq_group_metadata.seq_data.keys())
  361. assert len(seq_ids) == 1
  362. seq_id = seq_ids[0]
  363. seq_data = seq_group_metadata.seq_data[seq_id]
  364. prompt_tokens = seq_data.get_token_ids()
  365. computed_len = seq_data.get_num_computed_tokens()
  366. seq_len = len(prompt_tokens)
  367. seq_lens.append(seq_len) # Prompt token num
  368. input_tokens.extend(prompt_tokens) # Token ids
  369. # Token position ids
  370. # NOTE: Here we assume that the first token in the prompt
  371. # is always the first token in the sequence.
  372. input_positions.extend(list(range(computed_len, seq_len)))
  373. mm_data = seq_group_metadata.multi_modal_data
  374. if mm_data:
  375. mm_kwargs = self.multi_modal_input_mapper(mm_data)
  376. multi_modal_inputs_list.append(mm_kwargs)
  377. if seq_group_metadata.block_tables is None:
  378. # During memory profiling, the block tables are not initialized
  379. # yet. In this case, we just use a dummy slot mapping.
  380. slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
  381. continue
  382. # Compute the slot mapping.
  383. block_table = seq_group_metadata.block_tables[seq_id]
  384. # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
  385. # where start_idx is max(0, seq_len - sliding_window).
  386. # For example, if the prompt len is 10, sliding window is 8, and
  387. # block size is 4, the first two tokens are masked and the slot
  388. # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
  389. start_idx = 0
  390. if self.sliding_window is not None:
  391. start_idx = max(0, seq_len - self.sliding_window)
  392. for i in range(computed_len, seq_len):
  393. if i < start_idx:
  394. slot_mapping.append(_PAD_SLOT_ID)
  395. continue
  396. block_number = block_table[i //
  397. self.block_size] # type: ignore
  398. block_offset = i % self.block_size # type: ignore
  399. slot = block_number * self.block_size + block_offset
  400. slot_mapping.append(slot)
  401. num_prompt_tokens = len(input_tokens)
  402. input_tokens = torch.tensor(input_tokens,
  403. dtype=torch.long,
  404. device=self.device) # type: ignore
  405. input_positions = torch.tensor(input_positions,
  406. dtype=torch.long,
  407. device=self.device) # type: ignore
  408. slot_mapping = torch.tensor(slot_mapping,
  409. dtype=torch.long,
  410. device=self.device) # type: ignore
  411. max_seqlen = max(seq_lens)
  412. tmp = [0]
  413. tmp.extend(seq_lens)
  414. seqlen = torch.tensor(tmp)
  415. seqlen_q = torch.cumsum(seqlen, dim=0).to(device=self.device)
  416. attn_metadata = self.attn_backend.make_metadata(
  417. is_prompt=True,
  418. slot_mapping=slot_mapping,
  419. seq_lens=seq_lens,
  420. seqlen_q=seqlen_q,
  421. max_seqlen=max_seqlen,
  422. seq_lens_tensor=None,
  423. max_decode_seq_len=None,
  424. num_prefills=len(seq_lens),
  425. num_prefill_tokens=num_prompt_tokens,
  426. num_decode_tokens=0,
  427. block_tables=torch.tensor([], device=self.device, dtype=torch.int),
  428. )
  429. multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list,
  430. device=self.device)
  431. return (input_tokens, input_positions, attn_metadata, seq_lens,
  432. multi_modal_kwargs)