PygmalionAI's large-scale inference engine
pygmalion.chat

It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

AlpinDale 4ed1bb9958 chore: add fault tolerance for RayTokenizerGroupPool 7 місяців тому
.github 04d22bf1a9 add clang-format 7 місяців тому
aphrodite 4ed1bb9958 chore: add fault tolerance for RayTokenizerGroupPool 7 місяців тому
assets b3df2351c8 readme: update with bsz1 graph 1 рік тому
cmake 89be49d058 fix: build for mi300x 7 місяців тому
examples af43576da0 feat: add MLPSpeculator speculative decoding support (#572) 7 місяців тому
kernels 051daa0435 fix: add cutlass2x fallback kernels 7 місяців тому
rocm_patch 13d850334e fix: navi support (#283) 1 рік тому
tests abbb730607 feat: support draft model on different tensor parallel size 7 місяців тому
.clang-format 04d22bf1a9 add clang-format 7 місяців тому
.dockerignore 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) 7 місяців тому
.env f6250c5516 move dockerfiles to root; fix cpu build 7 місяців тому
.gitignore 7e1d2c9feb fix: add images/ to gitignore 7 місяців тому
CMakeLists.txt 7e54c3916d chore: factor out epilogues from cutlass kernels 7 місяців тому
CODE_OF_CONDUCT.md 9c45fe9a2a openai: fix metrics endpoint (#512) 8 місяців тому
CONTRIBUTING.md 9c45fe9a2a openai: fix metrics endpoint (#512) 8 місяців тому
Dockerfile 0c662bc813 fix: exclude modelscope 1.15.0 7 місяців тому
Dockerfile.cpu 5aa910a022 chore: allow building on non-avx512 machines 7 місяців тому
Dockerfile.neuron f6250c5516 move dockerfiles to root; fix cpu build 7 місяців тому
Dockerfile.rocm 89be49d058 fix: build for mi300x 7 місяців тому
Dockerfile.tpu fe21123a1c feat: TPU support (#570) 7 місяців тому
Dockerfile.xpu 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) 7 місяців тому
LICENSE 5adcb33e14 Revert license back to AGPLv3 (#38) 1 рік тому
MANIFEST.in a4a0423149 include more device requirements in manifest 7 місяців тому
README.md 949f0445de readme: update installation command 10 місяців тому
build-linux-wheel.sh 9d81716bfd [v0.5.3] Release Candidate (#388) 10 місяців тому
docker-compose.yml f6250c5516 move dockerfiles to root; fix cpu build 7 місяців тому
entrypoint.sh f6250c5516 move dockerfiles to root; fix cpu build 7 місяців тому
env.py e42a78381a feat: switch from pylint to ruff (#322) 1 рік тому
environment.yaml 9d81716bfd [v0.5.3] Release Candidate (#388) 10 місяців тому
formatting.sh 04d22bf1a9 add clang-format 7 місяців тому
mypy.ini 9d81716bfd [v0.5.3] Release Candidate (#388) 10 місяців тому
patch_xformers.rocm.sh 13d850334e fix: navi support (#283) 1 рік тому
pyproject.toml 9d81716bfd [v0.5.3] Release Candidate (#388) 10 місяців тому
requirements-build.txt 89ee54dcff update dockerfile and enhance serving benchmark 7 місяців тому
requirements-common.txt e2e64a6241 fix: limit numpy version 7 місяців тому
requirements-cpu.txt 5974495461 chore: phi3v resize for dynamic shape 7 місяців тому
requirements-cuda.txt e6d70101b3 feat: add support for phi-3 vision model 7 місяців тому
requirements-dev.txt 690110a051 feat: bitsandbytes quantization 7 місяців тому
requirements-neuron.txt 9d81716bfd [v0.5.3] Release Candidate (#388) 10 місяців тому
requirements-rocm.txt 9d81716bfd [v0.5.3] Release Candidate (#388) 10 місяців тому
requirements-tpu.txt fe21123a1c feat: TPU support (#570) 7 місяців тому
requirements-xpu.txt 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) 7 місяців тому
runtime.sh cbe37e8b18 fix: speed up cuda home detection (#288) 1 рік тому
setup.py 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) 7 місяців тому
update-runtime.sh 9d81716bfd [v0.5.3] Release Candidate (#388) 10 місяців тому

README.md

Breathing Life into Language

aphrodite

Aphrodite is the official backend engine for PygmalionAI. It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

Aphrodite builds upon and integrates the exceptional work from various projects.

The compute necessary for Aphrodite's development is provided by Arc Compute.

Features

  • Continuous Batching
  • Efficient K/V management with PagedAttention from vLLM
  • Optimized CUDA kernels for improved inference
  • Quantization support via AQLM, AWQ, Bitsandbytes, EXL2, GGUF, GPTQ, QuIP#, Smoothquant+, and SqueezeLLM
  • Distributed inference
  • Variety of sampling methods (Mirostat, Locally Typical Sampling, Tail-Free Sampling, etc)
  • 8-bit KV Cache for higher context lengths and throughput, at both FP8 and INT8 formats.

Quickstart

Install the engine:

$ pip install -U aphrodite-engine --extra-index-url https://downloads.pygmalion.chat/whl

Then launch a model:

$ aphrodite run meta-llama/Meta-Llama-3-8B-Instruct

This will create a OpenAI-compatible API server that can be accessed at port 2242 of the localhost. You can plug in the API into a UI that supports OpenAI, such as SillyTavern.

Please refer to the wiki for the full list of arguments and flags you can pass to the engine.

You can play around with the engine in the demo here:

Open In Colab

Docker

Additionally, we provide a Docker image for easy deployment. Here's a basic command to get you started:

sudo docker run -d -e MODEL_NAME="mistralai/Mistral-7B-Instruct-v0.2" -p 2242:2242 --gpus all --ipc host alpindale/aphrodite-engine

This will pull the Aphrodite Engine image (~9GiB download), and launch the engine with the Mistral-7B model at port 2242. Check here for the full list of env variables.

See here for the Compose file to use with Docker Compose.

Requirements

  • Operating System: Linux (or WSL for Windows)
  • Python: at least 3.8

For windows users, it's recommended to use tabbyAPI instead, if you do not need batching support.

Build Requirements:

  • CUDA >= 11

For supported GPUs, see here. Generally speaking, all semi-modern GPUs are supported - down to Pascal (GTX 10xx, P40, etc.)

Installation

Usage

For usage, please refer to the wiki page for detailed instructions. Aphrodite provides many different options for LLM inference, so please read through the list of options here.

Performance

Speeds vary with different GPUs, model sizes, quantization schemes, batch sizes, etc. Here are some baseline benchmarks conducted by requesting as many completions as possible from the API server.

Batch Size 1 Performance

These are the speeds a user would normally get if they request a single output with a sizable prompt and output length. Essentially, normal chatting experience.

The following results were gathered by sending a request with 8192 prompt tokens and requesting 1024 tokens with ignore_eos=True.

GPU: NVIDIA A40, Mistral 7B. Baseline is the same model loaded with text-generation-webui in FP16.

High Batch Size Performance

Work in Progress.

Notes

  1. By design, Aphrodite takes up 90% of your GPU's VRAM. If you're not serving an LLM at scale, you may want to limit the amount of memory it takes up. You can do this in the API example by launching the server with the --gpu-memory-utilization 0.6 (0.6 means 60%).

  2. You can view the full list of commands by running aphrodite run --help.

  3. Context Length extension via the RoPE method is supported for most models. Use the command-line flag --max-model-len to specify a desired context length and the engine will adjust the RoPE scaling accordingly.

  4. Please refer to the FAQ & Issues if you run into problems. If you don't find an answer there, please make an issue.

Acknowledgements

Aphrodite Engine would have not been possible without the phenomenal work of other open-source projects. Credits go to:

Contributing

Everyone is welcome to contribute. You can support the project by opening Pull Requests for new features, fixes, or general UX improvements.