123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- from typing import List, Optional
- import torch
- from torch import nn
- # TODO: We should port CLIPVisionModel's code over to not depend on
- # transformers' impl.
- from transformers import CLIPVisionModel, LlavaConfig
- from aphrodite.attention import AttentionMetadata
- from aphrodite.common.config import VisionLanguageConfig
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import LinearMethodBase
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import ParallelLMHead
- from aphrodite.modeling.models.llama import LlamaModel
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.modeling.hf_downloader import (default_weight_loader,
- hf_model_weights_iterator)
- from aphrodite.common.sequence import SamplerOutput
- _KEYS_TO_MODIFY_MAPPING = {
- "language_model.lm_head": "lm_head",
- "language_model.model": "language_model",
- }
- # TODO: Run benchmark and decide if TP.
- class LlavaMultiModalProjector(nn.Module):
- def __init__(self, vision_hidden_size: int, text_hidden_size: int,
- projector_hidden_act: str):
- super().__init__()
- self.linear_1 = nn.Linear(vision_hidden_size,
- text_hidden_size,
- bias=True)
- self.act = get_act_fn(projector_hidden_act)
- self.linear_2 = nn.Linear(text_hidden_size,
- text_hidden_size,
- bias=True)
- def forward(self, image_features):
- hidden_states = self.linear_1(image_features)
- hidden_states = self.act(hidden_states)
- hidden_states = self.linear_2(hidden_states)
- return hidden_states
- def _merge_vision_embeddings(input_ids: torch.Tensor,
- inputs_embeds: torch.Tensor,
- vision_embeddings: torch.Tensor,
- image_token_id: int):
- """In place merges in vision_embeddings with inputs_embeds."""
- mask = (input_ids == image_token_id)
- inputs_embeds[mask] = vision_embeddings.view(-1,
- vision_embeddings.shape[-1])
- class LlavaForConditionalGeneration(nn.Module):
- def __init__(self,
- config: "LlavaConfig",
- vision_language_config: VisionLanguageConfig,
- linear_method: Optional["LinearMethodBase"] = None) -> None:
- super().__init__()
- self.config = config
- self.vision_language_config = vision_language_config
- assert self.vision_language_config, (
- "Provide `image_input_type` and other vision "
- "related configurations through LLM entrypoint "
- "or engine arguments.")
- if self.vision_language_config.image_input_type == (
- VisionLanguageConfig.ImageInputType.PIXEL_VALUES):
- self.vision_tower = CLIPVisionModel(config.vision_config)
- else:
- self.vision_tower = None
- self.multi_modal_projector = LlavaMultiModalProjector(
- vision_hidden_size=config.vision_config.hidden_size,
- text_hidden_size=config.text_config.hidden_size,
- projector_hidden_act=config.projector_hidden_act)
- self.linear_method = linear_method
- self.language_model = LlamaModel(config.text_config, linear_method)
- self.unpadded_vocab_size = config.text_config.vocab_size
- self.lm_head = ParallelLMHead(
- self.unpadded_vocab_size,
- config.text_config.hidden_size,
- org_num_embeddings=self.language_model.org_vocab_size)
- logit_scale = getattr(config, "logit_scale", 1.0)
- self.logits_processor = LogitsProcessor(
- self.unpadded_vocab_size,
- min(config.vocab_size, config.tokenizer_vocab_size), logit_scale)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- image_input: Optional[torch.Tensor] = None
- ) -> SamplerOutput: # noqa: E501
- """Run forward pass for Llava 1.5.
- One key thing to understand is the `input_ids` already accounts for the
- positions of the to-be-inserted image embeddings.
- Concretely, consider a text prompt:
- "<image>\nUSER: What's the content of the image?\nASSISTANT:".
- Tokenizer outputs:
- [1, 32000, 29871, 13, 11889, 29901, 1724, 29915, 29879, 278,
- 2793, 310, 278, 1967, 29973, 13, 22933, 9047, 13566, 29901].
- The to-be-inserted image has a size of 576 (24 * 24) along the context
- length dimension.
- `input_ids` is thus [1, 32000, ..., 32000, 29871, 13, 11889, 29901,
- 1724, 29915, 29879, 278, 2793, 310, 278, 1967, 29973, 13, 22933,
- 9047, 13566, 29901].
- There will be 576 `32000` in the `input_ids`.
- (32000 is the token id for `<image>`.)
- This way, the `positions` and `attn_metadata` are consistent
- with the `input_ids`.
- The model takes two types of image inputs:
- PIXEL_VALUES and IMAGE_FEATURES.
- The following shows how each maps to huggingface implementation.
- PIXEL_VALUES:
- - https://github.com/huggingface/transformers/blob/07bdbeb/src/transformers/models/llava/modeling_llava.py#L353
- IMAGE_FEATURES:
- - https://github.com/huggingface/transformers/blob/07bdbeb/src/transformers/models/llava/modeling_llava.py#L430
- before going through the multi modal projector.
- Args:
- input_ids: Flattened (concatenated) input_ids corresponding to a
- batch.
- image_input: A batch of image inputs.
- For PIXEL_VALUES, expecting [1, 3, 336, 336].
- For IMAGE_FEATURES, expecting [1, 576, 1024].
- """
- if image_input is not None:
- if list(image_input.shape[1:]) != list(
- self.vision_language_config.image_input_shape[1:]):
- raise ValueError(
- f"The expected image tensor shape is batch dimension "
- f"plus "
- f"{self.vision_language_config.image_input_shape[1:]}."
- f" You supplied {image_input.shape}. "
- f"If you are using Aphrodite's endpoint, make sure your "
- f"supplied image input is consistent with "
- f"image_input_shape in engine args.")
- if self.vision_tower is not None:
- # TODO: Maybe port minimal CLIPVisionModel over.
- image_outputs = self.vision_tower(image_input,
- output_hidden_states=True)
- image_features = image_outputs.hidden_states[
- self.config.vision_feature_layer]
- # Copied from https://github.com/huggingface/transformers/blob/39c3c0a72af6fbda5614dde02ff236069bb79827/src/transformers/models/llava/modeling_llava.py#L421 # noqa
- if self.config.vision_feature_select_strategy == "default":
- image_features = image_features[:, 1:]
- elif self.config.vision_feature_select_strategy == "full":
- image_features = image_features
- else:
- raise ValueError(
- f"Unexpected select feature strategy: "
- f"{self.config.vision_feature_select_strategy}")
- else:
- image_features = image_input
- vision_embeddings = self.multi_modal_projector(image_features)
- inputs_embeds = self.language_model.get_input_embeddings(input_ids)
- _merge_vision_embeddings(
- input_ids, inputs_embeds, vision_embeddings,
- self.vision_language_config.image_token_id)
- input_ids = None
- else:
- inputs_embeds = None
- hidden_states = self.language_model(input_ids,
- positions,
- kv_caches,
- attn_metadata,
- inputs_embeds=inputs_embeds)
- return hidden_states
- def compute_logits(self, hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata) -> torch.Tensor:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self,
- model_name_or_path: str,
- cache_dir: Optional[str] = None,
- load_format: str = "auto",
- revision: Optional[str] = None):
- # only doing this for language model part for now.
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- ("qkv_proj", "q_proj", "q"),
- ("qkv_proj", "k_proj", "k"),
- ("qkv_proj", "v_proj", "v"),
- ("gate_up_proj", "gate_proj", 0),
- ("gate_up_proj", "up_proj", 1),
- ]
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in hf_model_weights_iterator(
- model_name_or_path, cache_dir, load_format, revision):
- if "rotary_emb.inv_freq" in name:
- continue
- for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items():
- if key_to_modify in name:
- name = name.replace(key_to_modify, new_key)
- use_default_weight_loading = False
- if "vision" in name:
- if self.vision_tower is not None:
- # We only do sharding for language model and
- # not vision model for now.
- use_default_weight_loading = True
- else:
- for (param_name, weight_name,
- shard_id) in stacked_params_mapping:
- if weight_name not in name:
- continue
- param = params_dict[name.replace(weight_name, param_name)]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- use_default_weight_loading = True
- if use_default_weight_loading:
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|