123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713 |
- import asyncio
- import os
- import time
- from functools import partial
- from typing import (Callable, Dict, Iterable, List, Optional, Set, Tuple, Type,
- Union, AsyncIterator)
- from loguru import logger
- from transformers import PreTrainedTokenizer
- from aphrodite.lora.request import LoRARequest
- from aphrodite.common.config import ModelConfig
- from aphrodite.engine.args_tools import AsyncEngineArgs
- from aphrodite.engine.aphrodite_engine import AphroditeEngine
- from aphrodite.engine.ray_tools import initialize_ray_cluster, ray
- from aphrodite.common.outputs import RequestOutput
- from aphrodite.common.sampling_params import SamplingParams
- from aphrodite.common.sequence import MultiModalData
- ENGINE_ITERATION_TIMEOUT_S = int(
- os.environ.get("APHRODITE_ENGINE_ITERATION_TIMEOUT_S", "120"))
- class AsyncEngineDeadError(RuntimeError):
- pass
- def _raise_exception_on_finish(
- task: asyncio.Task, error_callback: Callable[[Exception],
- None]) -> None:
- msg = ("Task finished unexpectedly. This should never happen! "
- "Please open an issue on Github. Include your full error "
- "log after killing the process with Ctrl+C.")
- exception = None
- try:
- task.result()
- # NOTE: This will be thrown if task exits normally (which it should not)
- raise AsyncEngineDeadError(msg)
- except asyncio.exceptions.CancelledError:
- pass
- except KeyboardInterrupt:
- raise
- except Exception as e:
- exception = e
- logger.error("Engine background task failed", exc_info=e)
- error_callback(exception)
- raise AsyncEngineDeadError(
- msg + " See stack trace above for the actual cause.") from e
- class AsyncStream:
- """A stream of RequestOutputs for a request that can be
- iterated over asynchronously."""
- def __init__(self, request_id: str) -> None:
- self.request_id = request_id
- self._queue = asyncio.Queue()
- self._finished = False
- def put(self, item: Union[RequestOutput, Exception]) -> None:
- if self._finished:
- return
- self._queue.put_nowait(item)
- def finish(self) -> None:
- self._queue.put_nowait(StopAsyncIteration())
- self._finished = True
- @property
- def finished(self) -> bool:
- return self._finished
- def __aiter__(self):
- return self
- async def __anext__(self) -> RequestOutput:
- result = await self._queue.get()
- if isinstance(result, Exception):
- raise result
- return result
- class RequestTracker:
- """Synchronous abstraction for tracking requests."""
- def __init__(self) -> None:
- self._request_streams: Dict[str, AsyncStream] = {}
- self._finished_requests: asyncio.Queue[str] = asyncio.Queue()
- self._new_requests: asyncio.Queue[Tuple[AsyncStream,
- dict]] = asyncio.Queue()
- self.new_requests_event = asyncio.Event()
- def __contains__(self, item):
- return item in self._request_streams
- def __len__(self) -> int:
- return len(self._request_streams)
- def propagate_exception(self,
- exc: Exception,
- request_id: Optional[str] = None) -> None:
- """Propagate an exception to request streams
- (all if request_id is None)."""
- if request_id is not None:
- self._request_streams[request_id].put(exc)
- self.abort_request(request_id)
- else:
- for rid, stream in self._request_streams.items():
- stream.put(exc)
- self.abort_request(rid)
- def process_request_output(self,
- request_output: RequestOutput,
- *,
- verbose: bool = False) -> None:
- """Process a request output from the engine."""
- request_id = request_output.request_id
- self._request_streams[request_id].put(request_output)
- if request_output.finished:
- if verbose:
- logger.info(f"Finished request {request_id}.")
- self.abort_request(request_id)
- def process_exception(self,
- request_id: str,
- exception: Exception,
- *,
- verbose: bool = False) -> None:
- """Propagate an exception from the engine."""
- self._request_streams[request_id].put(exception)
- if verbose:
- logger.info(f"Finished request {request_id}.")
- self.abort_request(request_id)
- def add_request(self, request_id: str,
- **engine_add_request_kwargs) -> AsyncStream:
- """Add a request to be sent to the engine on the next background
- loop iteration."""
- if request_id in self._request_streams:
- raise KeyError(f"Request {request_id} already exists.")
- stream = AsyncStream(request_id)
- self._new_requests.put_nowait((stream, {
- "request_id": request_id,
- **engine_add_request_kwargs
- }))
- self.new_requests_event.set()
- return stream
- def abort_request(self, request_id: str, *, verbose: bool = False) -> None:
- """Abort a request during next background loop iteration."""
- if verbose:
- logger.info(f"Aborted request {request_id}.")
- self._finished_requests.put_nowait(request_id)
- if request_id not in self._request_streams or self._request_streams[
- request_id].finished:
- # The request has already finished or been aborted.
- return
- self._request_streams[request_id].finish()
- def get_new_and_finished_requests(self) -> Tuple[List[Dict], Set[str]]:
- """Get the new requests and finished requests to be
- sent to the engine."""
- new_requests: List[Dict] = []
- finished_requests: Set[str] = set()
- while not self._finished_requests.empty():
- request_id = self._finished_requests.get_nowait()
- finished_requests.add(request_id)
- self._request_streams.pop(request_id, None)
- while not self._new_requests.empty():
- stream, new_request = self._new_requests.get_nowait()
- if stream.request_id in finished_requests:
- # The request has already been aborted.
- stream.finish()
- continue
- self._request_streams[stream.request_id] = stream
- new_requests.append(new_request)
- return new_requests, finished_requests
- async def wait_for_new_requests(self):
- if not self.has_new_requests():
- await self.new_requests_event.wait()
- self.new_requests_event.clear()
- def has_new_requests(self):
- return not self._new_requests.empty()
- class _AsyncAphrodite(AphroditeEngine):
- """Extension of AphroditeEngine to add async methods."""
- async def step_async(self) -> List[RequestOutput]:
- """Performs one decoding iteration and returns newly generated results.
- The workers are ran asynchronously if possible.
- This function performs one decoding iteration of the engine. It first
- schedules the sequences to be executed in the next iteration and the
- token blocks to be swapped in/out/copy. Then, it executes the model
- and updates the scheduler with the model outputs. Finally, it decodes
- the sequences and returns the newly generated results.
- """
- seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
- if not scheduler_outputs.is_empty():
- # Execute the model.
- output = await self.model_executor.execute_model_async(
- seq_group_metadata_list, scheduler_outputs.blocks_to_swap_in,
- scheduler_outputs.blocks_to_swap_out,
- scheduler_outputs.blocks_to_copy,
- scheduler_outputs.num_lookahead_slots)
- else:
- output = []
- request_outputs = self._process_model_outputs(
- output, scheduler_outputs.scheduled_seq_groups,
- scheduler_outputs.ignored_seq_groups)
- # Log stats.
- if self.log_stats:
- self.stat_logger.log(self._get_stats(scheduler_outputs))
- return request_outputs
- async def encode_request_async(
- self,
- request_id: str, # pylint: disable=unused-argument
- prompt: Optional[str],
- prompt_token_ids: Optional[List[int]] = None,
- lora_request: Optional[LoRARequest] = None,
- ):
- if prompt_token_ids is None:
- assert prompt is not None
- prompt_token_ids = await self.tokenizer.encode_async(
- request_id=request_id,
- prompt=prompt,
- lora_request=lora_request)
- return prompt_token_ids
- async def add_request_async(
- self,
- request_id: str,
- prompt: Optional[str],
- sampling_params: SamplingParams,
- prompt_token_ids: Optional[List[int]] = None,
- arrival_time: Optional[float] = None,
- lora_request: Optional[LoRARequest] = None,
- multi_modal_data: Optional[MultiModalData] = None,
- ) -> None:
- if lora_request is not None and not self.lora_config:
- raise ValueError(f"Got lora_request {lora_request} but LoRA is "
- "not enabled!")
- if arrival_time is None:
- arrival_time = time.time()
- prompt_token_ids = await self.encode_request_async(
- request_id=request_id,
- prompt=prompt,
- prompt_token_ids=prompt_token_ids,
- lora_request=lora_request)
- return self.add_request(request_id,
- prompt=prompt,
- prompt_token_ids=prompt_token_ids,
- sampling_params=sampling_params,
- arrival_time=arrival_time,
- lora_request=lora_request,
- multi_modal_data=multi_modal_data)
- async def check_health_async(self) -> None:
- self.model_executor.check_health()
- class AsyncAphrodite:
- """An asynchronous wrapper for AphroditeEngine.
- This class is used to wrap the AphroditeEngine class to make it
- asynchronous. It uses asyncio to create a background loop that keeps
- processing incoming requests. The AphroditeEngine is kicked by the
- generate method when there are requests in the waiting queue.
- The generate method yields the outputs from the AphroditeEngine
- to the caller.
- NOTE: For the comprehensive list of arguments, see `AphroditeEngine`.
- Args:
- worker_use_ray: Whether to use Ray for model workers. Required for
- distributed execution. Should be the same as
- `parallel_config.worker_use_ray`.
- engine_use_ray: Whether to make AphroditeEngine a Ray actor. If so, the
- async frontend will be executed in a separate process as the
- model workers.
- log_requests: Whether to log the requests.
- max_log_len: Maximum number of prompt characters or prompt ID numbers
- being printed in log.
- start_engine_loop: If True, the background task to run the engine
- will be automatically started in the generate call.
- *args: Arguments for AphroditeEngine.
- *kwargs: Arguments for AphroditeEngine.
- """
- _engine_class: Type[_AsyncAphrodite] = _AsyncAphrodite
- def __init__(self,
- worker_use_ray: bool,
- engine_use_ray: bool,
- *args,
- log_requests: bool = True,
- max_log_len: int = 0,
- start_engine_loop: bool = True,
- **kwargs) -> None:
- self.worker_use_ray = worker_use_ray
- self.engine_use_ray = engine_use_ray
- self.log_requests = log_requests
- self.max_log_len = max_log_len
- self.engine = self._init_engine(*args, **kwargs)
- self.background_loop = None
- # We need to keep a reference to unshielded
- # task as well to prevent it from being garbage
- # collected
- self._background_loop_unshielded = None
- self.start_engine_loop = start_engine_loop
- self._request_tracker: Optional[RequestTracker] = None
- self._errored_with: Optional[BaseException] = None
- @classmethod
- def from_engine_args(cls,
- engine_args: AsyncEngineArgs,
- start_engine_loop: bool = True) -> "AsyncAphrodite":
- """Creates an async LLM engine from the engine arguments."""
- # Create the engine configs.
- engine_config = engine_args.create_engine_config()
- if engine_config.device_config.device_type == "neuron":
- from aphrodite.executor.neuron_executor import NeuronExecutor
- executor_class = NeuronExecutor
- elif engine_config.device_config.device_type == "cpu":
- from aphrodite.executor.cpu_executor import CPUExecutor
- executor_class = CPUExecutor
- elif engine_config.parallel_config.worker_use_ray:
- initialize_ray_cluster(engine_config.parallel_config)
- from aphrodite.executor.ray_gpu_executor import RayGPUExecutorAsync
- executor_class = RayGPUExecutorAsync
- else:
- assert engine_config.parallel_config.world_size == 1, (
- "Ray is required if parallel_config.world_size > 1.")
- from aphrodite.executor.gpu_executor import GPUExecutorAsync
- executor_class = GPUExecutorAsync
- # Create the async LLM engine.
- engine = cls(engine_config.parallel_config.worker_use_ray,
- engine_args.engine_use_ray,
- **engine_config.to_dict(),
- executor_class=executor_class,
- log_requests=not engine_args.disable_log_requests,
- log_stats=not engine_args.disable_log_stats,
- max_log_len=engine_args.max_log_len,
- start_engine_loop=start_engine_loop)
- return engine
- @property
- def is_running(self) -> bool:
- return (self.background_loop is not None
- and not self._background_loop_unshielded.done())
- @property
- def is_stopped(self) -> bool:
- return self.errored or (self.background_loop is not None
- and self._background_loop_unshielded.done())
- @property
- def errored(self) -> bool:
- return self._errored_with is not None
- def set_errored(self, exc: Exception) -> None:
- self._errored_with = exc
- def _error_callback(self, exc: Exception) -> None:
- self.set_errored(exc)
- self._request_tracker.propagate_exception(exc)
- async def get_tokenizer(self) -> "PreTrainedTokenizer":
- if self.engine_use_ray:
- return await self.engine.get_tokenizer.remote()
- else:
- return self.engine.get_tokenizer()
- def start_background_loop(self) -> None:
- """Start the background loop."""
- if self.errored:
- raise AsyncEngineDeadError(
- "Background loop has errored already.") from self._errored_with
- if self.is_running:
- raise RuntimeError("Background loop is already running.")
- # Initialize the RequestTracker here so it uses the right event loop.
- self._request_tracker = RequestTracker()
- self._background_loop_unshielded = asyncio.get_event_loop(
- ).create_task(self.run_engine_loop())
- self._background_loop_unshielded.add_done_callback(
- partial(_raise_exception_on_finish,
- error_callback=self._error_callback))
- self.background_loop = asyncio.shield(self._background_loop_unshielded)
- def _init_engine(self, *args,
- **kwargs) -> Union[_AsyncAphrodite, "ray.ObjectRef"]:
- if not self.engine_use_ray:
- engine_class = self._engine_class
- elif self.worker_use_ray:
- engine_class = ray.remote(num_cpus=0)(self._engine_class).remote
- else:
- # FIXME: This is a bit hacky. Be careful when changing the
- # order of the arguments.
- cache_config = kwargs["cache_config"]
- parallel_config = kwargs["parallel_config"]
- if parallel_config.tensor_parallel_size == 1:
- num_gpus = cache_config.gpu_memory_utilization
- else:
- num_gpus = 1
- engine_class = ray.remote(num_gpus=num_gpus)(
- self._engine_class).remote
- return engine_class(*args, **kwargs)
- async def engine_step(self) -> bool:
- """Kick the engine to process the waiting requests.
- Returns True if there are in-progress requests."""
- new_requests, finished_requests = (
- self._request_tracker.get_new_and_finished_requests())
- for new_request in new_requests:
- # Add the request into the Aphrodite engine's waiting queue.
- # TODO: Maybe add add_request_batch to reduce Ray overhead
- try:
- if self.engine_use_ray:
- await self.engine.add_request.remote(**new_request)
- else:
- await self.engine.add_request_async(**new_request)
- except ValueError as e:
- # TODO: use an Aphrodite specific error for failed validation
- self._request_tracker.process_exception(
- new_request["request_id"],
- e,
- verbose=self.log_requests,
- )
- if finished_requests:
- await self._engine_abort(finished_requests)
- if self.engine_use_ray:
- request_outputs = await self.engine.step.remote()
- else:
- request_outputs = await self.engine.step_async()
- # Put the outputs into the corresponding streams.
- for request_output in request_outputs:
- self._request_tracker.process_request_output(
- request_output, verbose=self.log_requests)
- return len(request_outputs) > 0
- async def _engine_abort(self, request_ids: Iterable[str]):
- if self.engine_use_ray:
- await self.engine.abort_request.remote(request_ids)
- else:
- self.engine.abort_request(request_ids)
- async def run_engine_loop(self):
- has_requests_in_progress = False
- try:
- while True:
- if not has_requests_in_progress:
- logger.debug("Waiting for new requests...")
- await self._request_tracker.wait_for_new_requests()
- logger.debug("Got new requests!")
- # Abort if iteration takes too long due to unrecoverable errors
- # (eg. NCCL timeouts).
- try:
- has_requests_in_progress = await asyncio.wait_for(
- self.engine_step(), ENGINE_ITERATION_TIMEOUT_S)
- except asyncio.TimeoutError as exc:
- logger.error(
- "Engine iteration timed out. This should never happen!"
- )
- self.set_errored(exc)
- raise
- await asyncio.sleep(0)
- except KeyboardInterrupt:
- logger.info("Engine loop interrupted. Exiting gracefully.")
- async def add_request(
- self,
- request_id: str,
- prompt: Optional[str],
- sampling_params: SamplingParams,
- prompt_token_ids: Optional[List[int]] = None,
- arrival_time: Optional[float] = None,
- lora_request: Optional[LoRARequest] = None,
- ) -> AsyncStream:
- if self.log_requests:
- shortened_prompt = prompt
- shortened_token_ids = prompt_token_ids
- if self.max_log_len is not None:
- if shortened_prompt is not None:
- shortened_prompt = shortened_prompt[:self.max_log_len]
- if shortened_token_ids is not None:
- shortened_token_ids = shortened_token_ids[:self.
- max_log_len]
- logger.info(f"Received request {request_id}: "
- f"prompt: {shortened_prompt!r}, "
- f"sampling_params: {sampling_params}, "
- f"lora_request: {lora_request}.")
- if not self.is_running:
- if self.start_engine_loop:
- self.start_background_loop()
- else:
- raise AsyncEngineDeadError(
- "Background loop is not running. If it was running, "
- "inspect the output to find the stacktrace of the "
- "error that caused the background loop to stop "
- "(AsyncEngineDeadError).")
- if arrival_time is None:
- arrival_time = time.time()
- if self.engine_use_ray:
- prompt_token_ids = await self.engine.encode_request_async.remote(
- request_id=request_id,
- prompt=prompt,
- prompt_token_ids=prompt_token_ids,
- lora_request=lora_request)
- else:
- prompt_token_ids = await self.engine.encode_request_async(
- request_id=request_id,
- prompt=prompt,
- prompt_token_ids=prompt_token_ids,
- lora_request=lora_request)
- stream = self._request_tracker.add_request(
- request_id,
- prompt=prompt,
- sampling_params=sampling_params,
- prompt_token_ids=prompt_token_ids,
- arrival_time=arrival_time,
- lora_request=lora_request)
- return stream
- async def generate(
- self,
- prompt: Optional[str],
- sampling_params: SamplingParams,
- request_id: str,
- prompt_token_ids: Optional[List[int]] = None,
- lora_request: Optional[LoRARequest] = None,
- ) -> AsyncIterator[RequestOutput]:
- """Generate outputs for a request.
- Generate outputs for a request. This method is a coroutine. It adds the
- request into the waiting queue of the AphroditeEngine and streams the
- outputs from the AphroditeEngine to the caller.
- Args:
- prompt: The prompt string. Can be None if prompt_token_ids is
- provided.
- sampling_params: The sampling parameters of the request.
- request_id: The unique id of the request.
- prompt_token_ids: The token IDs of the prompt. If None, we
- use the tokenizer to convert the prompts to token IDs.
- lora_request: LoRA request to use for generation, if any.
- Yields:
- The output `RequestOutput` objects from the AphroditeEngine for the
- request.
- Details:
- - If the engine is not running, start the background loop,
- which iteratively invokes
- # pylint: disable=line-too-long
- :meth:`~aphrodite.engine.async_aphrodite.AsyncAphrodite.engine_step`
- to process the waiting requests.
- - Add the request to the engine's `RequestTracker`.
- On the next background loop, this request will be sent to
- the underlying engine.
- Also, a corresponding `AsyncStream` will be created.
- - Wait for the request outputs from `AsyncStream` and yield them.
- Example:
- >>> # Please refer to entrypoints/api_server.py for
- >>> # the complete example.
- >>>
- >>> # initialize the engine and the example input
- >>> engine = AsyncAphrodite.from_engine_args(engine_args)
- >>> example_input = {
- >>> "prompt": "What is LLM?",
- >>> "stream": False, # assume the non-streaming case
- >>> "temperature": 0.0,
- >>> "request_id": 0,
- >>> }
- >>>
- >>> # start the generation
- >>> results_generator = engine.generate(
- >>> example_input["prompt"],
- >>> SamplingParams(temperature=example_input["temperature"]),
- >>> example_input["request_id"])
- >>>
- >>> # get the results
- >>> final_output = None
- >>> async for request_output in results_generator:
- >>> if await request.is_disconnected():
- >>> # Abort the request if the client disconnects.
- >>> await engine.abort(request_id)
- >>> # Return or raise an error
- >>> ...
- >>> final_output = request_output
- >>>
- >>> # Process and return the final output
- >>> ...
- """
- # Preprocess the request.
- # This should not be used for logging, as it is monotonic time.
- arrival_time = time.monotonic()
- try:
- stream = await self.add_request(
- request_id,
- prompt,
- sampling_params,
- prompt_token_ids=prompt_token_ids,
- arrival_time=arrival_time,
- lora_request=lora_request,
- )
- async for request_output in stream:
- yield request_output
- except asyncio.exceptions.CancelledError:
- logger.info(f"Request {request_id} cancelled.")
- self._abort(request_id)
- raise
- except (Exception, asyncio.CancelledError) as e:
- # If there is an exception or coroutine is cancelled, abort the
- # request.
- self._abort(request_id)
- raise e
- async def abort(self, request_id: str) -> None:
- """Abort a request.
- Abort a submitted request. If the request is finished or not found,
- this method will be a no-op.
- Args:
- request_id: The unique id of the request.
- """
- if not self.is_running:
- raise AsyncEngineDeadError(
- "Background loop is not running. If it was running, "
- "inspect the output to find the stacktrace of the "
- "error that caused the background loop to stop "
- "(AsyncEngineDeadError).")
- return self._abort(request_id)
- def _abort(self, request_id: str) -> None:
- """Abort a request.
- Abort a submitted request. If the request is finished or not found,
- this method will be a no-op.
- Args:
- request_id: The unique id of the request.
- """
- self._request_tracker.abort_request(request_id,
- verbose=self.log_requests)
- async def get_model_config(self) -> ModelConfig:
- """Get the model configuration of the Aphrodite engine."""
- if self.engine_use_ray:
- return await self.engine.get_model_config.remote()
- else:
- return self.engine.get_model_config()
- async def do_log_stats(self) -> None:
- if self.engine_use_ray:
- await self.engine.do_log_stats.remote()
- else:
- self.engine.do_log_stats()
- async def check_health(self) -> None:
- """Raises an error if engine is unhealthy."""
- t = time.perf_counter()
- logger.debug("Starting health check...")
- if self.is_stopped:
- raise AsyncEngineDeadError("Background loop is stopped.")
- if self.engine_use_ray:
- try:
- await self.engine.check_health.remote()
- except ray.exceptions.RayActorError as e:
- raise RuntimeError("Engine is dead.") from e
- else:
- await self.engine.check_health_async()
- logger.debug(f"Health check took {time.perf_counter()-t}s")
|