123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473 |
- //
- // Based off of:
- // cutlass/gemm/collective/sm90_mma_tma_gmma_rs_warpspecialized_mixed_input.hpp
- // Specifically:
- // https://github.com/NVIDIA/cutlass/tree/06b21349bcf6ddf6a1686a47a137ad1446579db9/include/cutlass/gemm/collective/sm90_mma_tma_gmma_rs_warpspecialized_mixed_input.hpp
- // Referred to as upstream from in the comments
- //
- // The main optimization machete implements compared to upstream is to prepack
- // the weight matrix to more closely match the shape of the wgmma instructions
- // allowing for wider (ideally 128bit) shared memory loads. For subbyte types
- // this is done by packing values from multiple wgmma loads (for a single
- // thread) into a single 128bit load. This is very similar to layout used in
- // Marlin, although specific to the wgmma instructions.
- //
- // Since the wgmma instructions only support sourcing from registers for the A
- // operand, and we want to upconvert/decompress the weight values/elements
- // before feeding them into the tensor cores in registers, we need the weight
- // matrix to be A. To achieve this we compute the transpose of Y = XW^t as
- // Y^t = W^tX^t. This is mostly done outside of this file in
- // csrc/quantization/machete/machete_mm_kernel.cuh, but this why A is the
- // quantized/narrow type and has the prepacked layout despite the API being:
- // B_prepacked = machete_prepack_B(B)
- // Y = machete_mm(A, B_prepacked)
- //
- #pragma once
- // clang-format off
- #include "cutlass/cutlass.h"
- #include "cutlass/numeric_conversion.h"
- #include "cute/arch/cluster_sm90.hpp"
- #include "cute/arch/copy_sm90.hpp"
- #include "cutlass/gemm/gemm.h"
- #include "cutlass/detail/dependent_false.hpp"
- #include "cutlass/gemm/dispatch_policy.hpp"
- #include "cutlass/detail/layout.hpp"
- #include "cute/algorithm/functional.hpp"
- #include "cute/atom/mma_atom.hpp"
- #include "cute/atom/copy_traits_sm90_tma.hpp"
- #include "cute/algorithm/gemm.hpp"
- #include "cute/tensor_predicate.hpp"
- #include "cute/numeric/arithmetic_tuple.hpp"
- #include "cutlass/pipeline/pipeline.hpp"
- #include "cutlass/transform/collective/sm90_wgmma_transpose.hpp"
- #include "cutlass/trace.h"
- #include "cutlass/detail/collective.hpp"
- // clang-format on
- #include "cutlass_extensions/cute_utils.cuh"
- namespace machete {
- using namespace cute;
- using namespace cutlass;
- using namespace cutlass::gemm;
- using namespace cutlass::gemm::collective;
- using namespace cutlass::gemm::collective::detail;
- template <class ElementATuple_, class GmemLayoutA, int AlignmentA,
- class ElementB_, class GmemLayoutB, int AlignmentB,
- class ElementAccumulator_, class TileShape_MNK,
- class ClusterShape_MNK, class StageCountType,
- class KernelScheduleType>
- struct MacheteCollectiveMma {
- using Schedule = KernelScheduleType;
- static_assert(
- cute::is_same_v<Schedule, KernelTmaWarpSpecialized> ||
- cute::is_same_v<Schedule, KernelTmaWarpSpecializedMixedInput> ||
- cute::is_same_v<Schedule, KernelTmaWarpSpecializedPingpong> ||
- cute::is_same_v<Schedule,
- KernelTmaWarpSpecializedPingpongMixedInput> ||
- cute::is_same_v<Schedule, KernelTmaWarpSpecializedCooperative> ||
- cute::is_same_v<Schedule,
- KernelTmaWarpSpecializedCooperativeMixedInput>,
- "KernelSchedule must be one of the warp specialized policies");
- public:
- static constexpr bool ALayoutIsPrepacked = true;
- // Prepacked block shape (N is M in the transposed problem)
- using PPBlockShape_MK = typename GmemLayoutA::PPBlockShape_NK;
- // Prepacked blocks per dim for a single MMA tile
- using PPBlocksPerTile_MK = decltype(make_shape(
- size<0>(TileShape_MNK{}) / size<0>(PPBlockShape_MK{}),
- size<2>(TileShape_MNK{}) / size<1>(PPBlockShape_MK{})));
- using IlvdBlkLayout = typename GmemLayoutA::IlvdBlkLayout;
- static_assert(size<0>(TileShape_MNK{}) % size<0>(PPBlockShape_MK{}) == 0,
- "M in PPBlockShape_MK must evenly divide M TileShape_MNK");
- static_assert(size<2>(TileShape_MNK{}) % size<1>(PPBlockShape_MK{}) == 0,
- "K in PPBlockShape_MK must evenly divide K TileShape_MNK");
- using ArchTag = arch::Sm90;
- using TileShape = TileShape_MNK;
- using ClusterShape = ClusterShape_MNK;
- using ElementA = deduce_mixed_width_dtype_t<0, ElementATuple_>;
- using StrideA = TagToStrideA_t<layout::RowMajor>;
- using ElementB = ElementB_;
- using StrideB = TagToStrideB_t<GmemLayoutB>;
- using ElementAccumulator = ElementAccumulator_;
- using ElementMma = ElementB;
- using ElementATuple =
- cute::conditional_t<!cute::is_tuple<ElementATuple_>::value,
- cute::tuple<ElementA>, ElementATuple_>;
- static constexpr cute::GMMA::Major GmmaMajorA =
- gmma_rs_tag_to_major_A<layout::RowMajor>();
- static constexpr cute::GMMA::Major GmmaMajorB =
- gmma_rs_tag_to_major_B<GmemLayoutB>();
- // For coop schedules we have two warp groups cooperatively issuing wgmma
- // instructions so we use 2 atoms along the M dim (one for each warpgroup)
- using AtomLayoutMNK = cute::conditional_t<
- cute::is_same_v<KernelScheduleType,
- KernelTmaWarpSpecializedCooperativeMixedInput>,
- Layout<Shape<_2, _1, _1>>, Layout<Shape<_1, _1, _1>>>;
- using TiledMma = decltype(cute::make_tiled_mma(
- cute::GMMA::rs_op_selector<ElementMma, ElementMma, ElementAccumulator,
- TileShape_MNK, GMMA::Major::K, GmmaMajorB>(),
- AtomLayoutMNK{}));
- private:
- //
- // the setup section (until "section setup end") contains a combination of
- // modified code from (used as a starting point):
- // `cutlass/gemm/collective/builders/sm90_gmma_builder.inl`
- // `cutlass/gemm/collective/sm90_mma_tma_gmma_rs_warpspecialized_mixed_input.hpp`
- // (upstream)
- //
- // however in-order to simplify the code we combine a lot of the logic from
- // `CollectiveMma` and `CollectiveBuilder` into this class, this also makes
- // sense given that we have flexibility on layouts here. We also simplify the
- // code by only supporting scales and zeros for A (in the transposed problem,
- // B from an API perspective), also since we force A to be the narrow type
- // (i.e. the type to be upconverted) we can remove all the `SwapAB` logic in
- // the upstream also simplifying the code. This section includes new logic
- // (compared ustream) for handling the prepacked-A layouts (in the transposed
- // problem, B from an API perspective)
- //
- using ElementScale = deduce_mixed_width_dtype_t<1, ElementATuple_>;
- using ElementZero = deduce_mixed_width_dtype_t<2, ElementATuple_>;
- static constexpr bool IsANarrow = cutlass::sizeof_bits<ElementA>::value <
- cutlass::sizeof_bits<ElementB>::value;
- static_assert(IsANarrow,
- "A must be the narrow one since its the one that flows through "
- "registers.");
- public:
- static constexpr int PipelineStages =
- compute_stage_count_or_override_single_affine_transformed_input<
- sm90_smem_capacity_bytes, ElementA, ElementB, ElementScale,
- ElementZero, TileShape_MNK>(StageCountType{});
- struct DispatchPolicy {
- constexpr static int Stages = PipelineStages;
- using ClusterShape = ClusterShape_MNK;
- using Schedule = KernelScheduleType;
- };
- using GmemTiledCopyA =
- decltype(sm90_cluster_shape_to_tma_atom(shape<1>(ClusterShape_MNK{})));
- using GmemTiledCopyB =
- decltype(sm90_cluster_shape_to_tma_atom(shape<0>(ClusterShape_MNK{})));
- // ((T, V), (BlocksM, BlocksK), pipe) -> offset
- using SmemLayoutA = decltype(GmemLayoutA::TVbNbKL_to_offset(
- make_shape(size<0>(TileShape_MNK{}), size<2>(TileShape_MNK{}),
- Int<DispatchPolicy::Stages>{})));
- using SmemLayoutAtomARowMajor =
- decltype(rs_smem_selector<GmmaMajorA, ElementA,
- decltype(cute::get<0>(TileShape_MNK{})),
- decltype(cute::get<2>(TileShape_MNK{}))>());
- using SmemLayoutAtomScale = Layout<
- Shape<decltype(cute::shape<0>(SmemLayoutAtomARowMajor{})), cute::Int<1>>>;
- using SmemLayoutAtomB =
- decltype(rs_smem_selector<GmmaMajorB, ElementB,
- decltype(cute::get<1>(TileShape_MNK{})),
- decltype(cute::get<2>(TileShape_MNK{}))>());
- using SmemCopyAtomA = Copy_Atom<cute::DefaultCopy, ElementA>;
- using SmemCopyAtomB = void;
- //
- // Validity checks
- //
- static_assert(is_static<TileShape_MNK>::value);
- static_assert(is_static<ClusterShape_MNK>::value);
- static_assert(is_aligned<ElementA, AlignmentA, ElementB, AlignmentB,
- tma_alignment_bytes>(),
- "Should meet TMA alignment requirement\n");
- #ifndef CUTLASS_SM90_COLLECTIVE_BUILDER_SUPPORTED
- static_assert(cutlass::detail::dependent_false<ElementA>,
- "Unsupported Toolkit for SM90 Collective Builder\n");
- #endif
- private:
- enum class ConversionMode {
- DirectConvert,
- ConvertAndScale,
- ConvertAndScaleWithZero
- };
- public:
- //
- // Type Aliases
- //
- using KernelSchedule = KernelScheduleType;
- // For cases where we can't have a void type, we can use this to allow the
- // code to compile when the scale / zero is void.
- using NonVoidElementScale =
- cute::conditional_t<cute::is_void_v<ElementScale>, float, ElementScale>;
- using NonVoidElementZero =
- cute::conditional_t<cute::is_void_v<ElementZero>, float, ElementZero>;
- // These are always MN major
- using StrideScale = cute::Stride<cute::Int<1>, int64_t, int64_t>;
- // For cases where we can't have a void scale, we can use this to allow the
- // code to compile when the scale is void.
- using NonVoidStrideScale =
- cute::conditional_t<cute::is_void_v<StrideScale>,
- cute::Stride<_1, int64_t, int64_t>, StrideScale>;
- static_assert((cutlass::gemm::detail::is_k_major<StrideA>()),
- "The transformed matrix (A) must be K-major.");
- static_assert((sizeof(ElementB) == 2) ||
- (cutlass::gemm::detail::is_k_major<StrideA>() &&
- cutlass::gemm::detail::is_k_major<StrideB>()),
- "The unscaled element (matrix B) must be 2 bytes OR both "
- "inputs must be K-major");
- static_assert(cutlass::gemm::detail::is_mn_major<NonVoidStrideScale>(),
- "Scale must be MN major [Col Major if A is scaled, Row Major "
- "if B is scaled].");
- static_assert(std::is_same_v<typename TiledMma::ValTypeC, ElementAccumulator>,
- "TiledMma::ValTypeC must be the same as ElementAccumulator.");
- using GmemTiledCopyScale = cute::SM90_TMA_LOAD;
- using SmemCopyAtomScale = Copy_Atom<cute::DefaultCopy, NonVoidElementScale>;
- // TMA converts f32 input to tf32 when copying from GMEM to SMEM
- // For all other types, cast to size equivalent uint type to avoid any
- // rounding by TMA.
- static constexpr bool ConvertF32toTF32A = cute::is_same_v<float, ElementA>;
- static constexpr bool ConvertF32toTF32B = cute::is_same_v<float, ElementB>;
- using InternalElementA =
- cute::conditional_t<ConvertF32toTF32A, tfloat32_t,
- uint_bit_t<sizeof_bits_v<ElementA>>>;
- using InternalElementB =
- cute::conditional_t<ConvertF32toTF32B, tfloat32_t,
- uint_bit_t<sizeof_bits_v<ElementB>>>;
- using TransformA = cute::identity;
- using TransformB = cute::identity;
- static constexpr int IsSubbyteA = cute::sizeof_bits_v<InternalElementA> < 8;
- using TmaElementA =
- cute::conditional_t<IsSubbyteA, uint8_t, InternalElementA>;
- using MainloopPipeline = cutlass::PipelineTmaAsync<DispatchPolicy::Stages>;
- using PipelineState = cutlass::PipelineState<DispatchPolicy::Stages>;
- using PipelineParams = typename MainloopPipeline::Params;
- using ScaleTileShape = decltype(make_shape(shape<0>(TileShape{}),
- shape<1>(SmemLayoutAtomScale{})));
- static_assert(cute::rank(SmemLayoutAtomB{}) == 2,
- "SmemLayoutAtom must be rank 2 (M/N, K)");
- static_assert((size<1>(TileShape{}) % size<0>(SmemLayoutAtomB{})) == 0,
- "SmemLayoutAtom must evenly divide tile shape.");
- static_assert((size<2>(TileShape{}) % size<1>(SmemLayoutAtomB{})) == 0,
- "SmemLayoutAtom must evenly divide tile shape.");
- static_assert(rank(SmemLayoutAtomScale{}) == 2,
- "SmemLayoutAtomScale must be rank 2");
- static_assert((size<0>(TileShape{}) % size<0>(SmemLayoutAtomScale{})) == 0,
- "SmemLayoutAtomScale must equal the tile shape.");
- static_assert((size<2>(TileShape{}) % size<1>(SmemLayoutAtomScale{})) == 0,
- "SmemLayoutAtomScale must evenly divide tile k shape.");
- // Tile along modes in a way that maximizes the TMA box size.
- using SmemLayoutACopy = decltype(tile_to_shape(
- SmemLayoutAtomARowMajor{},
- make_shape(shape<0>(TileShape{}), shape<2>(TileShape{}),
- Int<DispatchPolicy::Stages>{}),
- conditional_t<::cutlass::gemm::detail::is_major<0, StrideA>(),
- Step<_2, _1, _3>, Step<_1, _2, _3>>{}));
- using SmemLayoutB = decltype(tile_to_shape(
- SmemLayoutAtomB{},
- make_shape(shape<1>(TileShape{}), shape<2>(TileShape{}),
- Int<DispatchPolicy::Stages>{}),
- conditional_t<::cutlass::gemm::detail::is_major<0, StrideB>(),
- Step<_2, _1, _3>, Step<_1, _2, _3>>{}));
- // It is assumed that the scales and zero-points share the same smem layout
- using SmemLayoutScale = decltype(tile_to_shape(
- SmemLayoutAtomScale{},
- make_shape(shape<0>(ScaleTileShape{}), shape<1>(ScaleTileShape{}),
- Int<PipelineStages>{})));
- // If A mn-layout and B mn-layout, transposing B matrix since WGMMA is k-major
- // only (e.g. tf32, fp32, fp8, int8).
- static constexpr bool IsLayoutAmnBmn =
- cute::is_same_v<gemm::detail::StrideToLayoutTagA_t<StrideA>,
- layout::ColumnMajor> &&
- cute::is_same_v<gemm::detail::StrideToLayoutTagB_t<StrideB>,
- layout::RowMajor>;
- static_assert(DispatchPolicy::Stages >= 2,
- "Specialization requires Stages set to value 2 or more.");
- static_assert(not cute::is_base_of<cute::GMMA::DescriptorIterator,
- typename TiledMma::FrgTypeA>::value &&
- cute::is_base_of<cute::GMMA::DescriptorIterator,
- typename TiledMma::FrgTypeB>::value,
- "MMA atom must source A from rmem and B operand from smem_desc "
- "for this mainloop.");
- static_assert(cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD> ||
- cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_MULTICAST>,
- "GmemTiledCopy - invalid SM90 TMA copy atom specified.");
- static_assert(cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD> ||
- cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_MULTICAST>,
- "GmemTiledCopy - invalid SM90 TMA copy atom specified.");
- using GmmaSmemLayoutB = decltype(tile_to_shape(
- SmemLayoutAtomB{},
- make_shape(shape<1>(TileShape{}), shape<2>(TileShape{}),
- Int<DispatchPolicy::Stages>{}),
- conditional_t<::cutlass::gemm::detail::is_major<0, StrideB>(),
- Step<_2, _1, _3>, Step<_1, _2, _3>>{}));
- // These two restrictions are related, so we place the assertions together.
- // To relax them, we need to handle loading more than 1 row of scales for
- // every main loop iteration. We must also handle updating the pipeline
- // transaction bytes on the fly. NOTE: Deleting this assertion without
- // required changes will cause the code to hang.
- static_assert(size<1>(SmemLayoutAtomScale{}) == 1,
- "size<1>(SmemLayoutAtomScale) must be 1.");
- private:
- static constexpr ConversionMode get_conversion_mode() {
- if constexpr (cute::is_void_v<ElementScale>) {
- return ConversionMode::DirectConvert;
- } else if constexpr (cute::is_void_v<ElementZero>) {
- return ConversionMode::ConvertAndScale;
- } else {
- return ConversionMode::ConvertAndScaleWithZero;
- }
- }
- static constexpr ConversionMode KernelConversionMode = get_conversion_mode();
- static constexpr bool ModeHasScales =
- KernelConversionMode == ConversionMode::ConvertAndScale ||
- KernelConversionMode == ConversionMode::ConvertAndScaleWithZero;
- // Same as upstream, should be kept the same when possible
- static constexpr auto elements_per_smem_scale() {
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- return 0;
- } else if constexpr (ModeHasScales) {
- return cute::cosize_v<SmemLayoutScale>;
- } else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>,
- "Type not handled in scale smem allocation.");
- }
- }
- // Same as upstream, should be kept the same when possible
- static constexpr auto elements_per_smem_zero() {
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert ||
- KernelConversionMode == ConversionMode::ConvertAndScale) {
- return 0;
- } else if constexpr (KernelConversionMode ==
- ConversionMode::ConvertAndScaleWithZero) {
- return cute::cosize_v<SmemLayoutScale>;
- } else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>,
- "Type not handled in scale smem allocation.");
- }
- }
- // Same as upstream, should be kept the same when possible, not formatte for
- // easier comparison
- // clang-format off
- // These methods use some the public members of the class. For that reason, we define them after the public section.
- static constexpr uint32_t
- compute_tma_transaction_bytes_mk() {
- constexpr uint32_t baseline_bytes = cutlass::bits_to_bytes(size<0>(SmemLayoutA{}) * size<1>(SmemLayoutA{}) * static_cast<uint32_t>(cute::sizeof_bits_v<InternalElementA>));
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- return baseline_bytes;
- }
- else if constexpr (ModeHasScales) {
- constexpr uint32_t scale_tx_bytes = cutlass::bits_to_bytes(size<0>(SmemLayoutScale{}) * size<1>(SmemLayoutScale{}) * static_cast<uint32_t>(cute::sizeof_bits_v<ElementScale>));
- static_assert(scale_tx_bytes % 128 == 0, "Each scale stage must be 128B aligned."); // required by TMA
- if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- return baseline_bytes + scale_tx_bytes;
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) {
- // Scale and zero share smem layout
- constexpr uint32_t zero_tx_bytes = cutlass::bits_to_bytes(size<0>(SmemLayoutScale{}) * size<1>(SmemLayoutScale{}) * static_cast<uint32_t>(cute::sizeof_bits_v<ElementZero>));
- static_assert(zero_tx_bytes % 128 == 0, "Each zero stage must be 128B aligned."); // required by TMA
- return baseline_bytes + scale_tx_bytes + zero_tx_bytes;
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Type not handled in tma transaction bytes computation.");
- }
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Type not handled in tma transaction bytes computation.");
- }
- }
- static constexpr uint32_t
- compute_tma_transaction_bytes_nk() {
- return cutlass::bits_to_bytes(size<0>(SmemLayoutB{}) * size<1>(SmemLayoutB{}) * static_cast<uint32_t>(cute::sizeof_bits_v<InternalElementB>));
- }
- // clang-format on
- // ((athrid, val), (BlocksM, BlockK), L) -> (storage_idx)
- using PrepackedStrideA = decltype(stride(GmemLayoutA::TVbNbKL_to_offset(
- make_shape(int32_t(0), int32_t(0), int32_t(0)))));
- using ATensor = decltype(make_tensor(
- get_logical_ptr(static_cast<InternalElementA const*>(nullptr)),
- shape(GmemLayoutA::TVbNbKL_to_offset(
- make_shape(int32_t(0), int32_t(0), int32_t(0)))),
- PrepackedStrideA{}));
- using BTensor = decltype(make_tensor(
- get_logical_ptr(static_cast<InternalElementB const*>(nullptr)),
- repeat_like(StrideB{}, int32_t(0)), StrideB{}));
- using ScaleTensor = decltype(make_tensor(
- get_logical_ptr(static_cast<NonVoidElementScale const*>(nullptr)),
- repeat_like(NonVoidStrideScale{}, int32_t(0)), NonVoidStrideScale{}));
- using ZeroTensor = decltype(make_tensor(
- get_logical_ptr(static_cast<NonVoidElementZero const*>(nullptr)),
- repeat_like(NonVoidStrideScale{}, int32_t(0)), NonVoidStrideScale{}));
- static constexpr auto make_tma_copy_A(ATensor tensor_a = ATensor{}) {
- return make_tma_copy<TmaElementA>(
- GmemTiledCopyA{}, tensor_a, SmemLayoutA{}(_, _, cute::Int<0>{}),
- shape(SmemLayoutA{}(_, _, cute::Int<0>{})),
- size<1>(ClusterShape{})); // mcast along N mode for this M load, if any
- }
- static constexpr auto make_tma_copy_scale(
- ScaleTensor tensor_scale = ScaleTensor{}) {
- return make_tma_copy(GmemTiledCopyScale{}, tensor_scale,
- SmemLayoutScale{}(_, _, cute::Int<0>{}),
- ScaleTileShape{},
- _1{}); // mcast along N mode for this M load, if any
- }
- static constexpr auto make_tma_copy_zero(
- ZeroTensor tensor_zero = ZeroTensor{}) {
- return make_tma_copy(GmemTiledCopyScale{}, tensor_zero,
- SmemLayoutScale{}(_, _, cute::Int<0>{}),
- ScaleTileShape{},
- _1{}); // mcast along N mode for this M load, if any
- }
- static constexpr auto make_tma_copy_B(BTensor tensor_b = BTensor{}) {
- return make_tma_copy(
- GmemTiledCopyB{}, tensor_b, SmemLayoutB{}(_, _, cute::Int<0>{}),
- make_shape(shape<1>(TileShape{}), shape<2>(TileShape{})),
- size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
- }
- public:
- // Same as upstream, should be kept the same when possible, not formatted for
- // easier comparison
- // with `RealInternalElementA` -> `ElementA` since we support `SwapAB` logic
- // clang-format off
- static constexpr size_t SmemAlignmentA = cutlass::detail::alignment_for_swizzle(SmemLayoutA{});
- static constexpr size_t SmemAlignmentB = cutlass::detail::alignment_for_swizzle(SmemLayoutB{});
- // Just pick the max alignment of A and B since it is required to be at least 128B
- static constexpr size_t SmemAlignmentScale = cute::max(SmemAlignmentA, SmemAlignmentB);
- static_assert(SmemAlignmentA >= 128 and SmemAlignmentB >= 128, "Require at least 128B alignment");
- struct SharedStorage
- {
- static constexpr int scale_elements = elements_per_smem_scale();
- static constexpr int zero_elements = elements_per_smem_zero();
- struct TensorStorage : cute::aligned_struct<cute::max(SmemAlignmentA, SmemAlignmentB)> {
- cute::ArrayEngine<ElementA, cute::cosize_v<SmemLayoutA>> smem_A;
- cute::ArrayEngine<typename TiledMma::ValTypeB, cute::cosize_v<SmemLayoutB>> smem_B;
- cute::ArrayEngine<NonVoidElementScale, scale_elements> smem_scale;
- cute::ArrayEngine<NonVoidElementZero, zero_elements> smem_zero;
- } tensors;
- using PipelineStorage = typename MainloopPipeline::SharedStorage;
- PipelineStorage pipeline;
- };
- using TensorStorage = typename SharedStorage::TensorStorage;
- using PipelineStorage = typename SharedStorage::PipelineStorage;
- // Host side kernel arguments
- struct Arguments {
- ElementA const* ptr_A = nullptr;
- StrideA dA{};
- ElementB const* ptr_B = nullptr;
- StrideB dB{};
- ElementScale const* ptr_S = nullptr;
- NonVoidStrideScale dS{};
- int group_size = 0;
- ElementZero const* ptr_Z = nullptr;
- uint32_t mma_promotion_interval = 4;
- };
- // clang-format on
- //
- // section setup end
- //
- // Similar (but not idendtical) to upstream, should be kept the same when
- // possible
- // compared to upstream we use `make_tma_copy_A`, `make_tma_copy_B` etc. to
- // define the TMA types
- // Device side kernel params
- struct Params {
- public:
- // Assumption: StrideA is congruent with Problem_MK
- using TMA_A = decltype(make_tma_copy_A());
- using TMA_Scale = decltype(make_tma_copy_scale());
- using TMA_Zero = decltype(make_tma_copy_zero());
- using TMA_B = decltype(make_tma_copy_B());
- // required by outer loop: i.e.
- // cutlass/gemm/kernel/sm90_gemm_tma_warpspecialized_cooperative.hpp
- TMA_A tma_load_a;
- TMA_B tma_load_b;
- TMA_Scale tma_load_scale;
- TMA_Zero tma_load_zero;
- int64_t scale_k;
- int group_size;
- uint32_t tma_transaction_bytes = TmaTransactionBytes;
- uint32_t tma_transaction_bytes_mk = TmaTransactionBytesMK;
- uint32_t tma_transaction_bytes_nk = TmaTransactionBytesNK;
- };
- //
- // Methods
- //
- // Similar (but not idendtical) to upstream, should be kept the same when
- // possible
- // compared to upstream we use `make_tma_copy_A` and `TVbNbKL_to_offset` here
- // to handle the prepacked layout
- template <class ProblemShape>
- static constexpr Params to_underlying_arguments(
- ProblemShape const& problem_shape, Arguments const& args,
- void* workspace) {
- (void)workspace;
- // Optionally append 1s until problem shape is rank-4 (MNKL), in case it is
- // only rank-3 (MNK)
- auto problem_shape_MNKL = append<4>(problem_shape, 1);
- auto [M, N, K, L] = problem_shape_MNKL;
- auto ptr_A = reinterpret_cast<InternalElementA const*>(args.ptr_A);
- auto ptr_B = reinterpret_cast<InternalElementB const*>(args.ptr_B);
- auto make_logical_tensor = [&](auto ptr, auto shape, auto stride) {
- return make_tensor(get_logical_ptr(ptr), make_layout(shape, stride));
- };
- typename Params::TMA_A tma_load_a;
- typename Params::TMA_B tma_load_b;
- typename Params::TMA_Scale tma_load_scale;
- typename Params::TMA_Zero tma_load_zero;
- auto layout = GmemLayoutA::TVbNbKL_to_offset(make_shape(M, K, L));
- tma_load_a = make_tma_copy_A(
- make_logical_tensor(ptr_A, shape(layout), stride(layout)));
- tma_load_b = make_tma_copy_B(
- make_logical_tensor(ptr_B, make_shape(N, K, L), args.dB));
- if constexpr (ModeHasScales) {
- tma_load_scale = make_tma_copy_scale(make_logical_tensor(
- args.ptr_S, make_shape(M, args.group_size, L), args.dS));
- }
- if constexpr (KernelConversionMode ==
- ConversionMode::ConvertAndScaleWithZero) {
- tma_load_zero = make_tma_copy_zero(make_logical_tensor(
- args.ptr_Z, make_shape(M, args.group_size, L), args.dS));
- }
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- return {tma_load_a, tma_load_b, tma_load_scale, tma_load_zero, 0, 0};
- } else if constexpr (ModeHasScales) {
- auto scale_k = (K + args.group_size - 1) / args.group_size;
- return {tma_load_a, tma_load_b, tma_load_scale,
- tma_load_zero, scale_k, args.group_size};
- } else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>,
- "Conversion mode not handled in to_underlying_arguments.");
- }
- }
- // Same as upstream, should be kept the same when possible, not formatted for
- // easier comparison
- // with `SwapAB ? N : M -> M` since we dont support SwapAB
- // clang-format off
- template<class ProblemShape>
- static bool
- can_implement(
- ProblemShape const& problem_shape,
- [[maybe_unused]] Arguments const& args) {
- constexpr int tma_alignment_bits = 128;
- auto problem_shape_MNKL = append<4>(problem_shape, 1);
- auto [M,N,K,L] = problem_shape_MNKL;
-
- bool implementable = true;
- constexpr int min_tma_aligned_elements_A = tma_alignment_bits / cutlass::sizeof_bits<ElementA>::value;
- implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_A>(cute::make_shape(M,K,L), StrideA{});
- constexpr int min_tma_aligned_elements_B = tma_alignment_bits / cutlass::sizeof_bits<ElementB>::value;
- implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_B>(cute::make_shape(N,K,L), StrideB{});
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- implementable = implementable && (args.ptr_S == nullptr);
- implementable = implementable && (args.ptr_Z == nullptr);
- }
- else if constexpr (ModeHasScales) {
- const int scale_mn = M;
- const int scale_k = (K + args.group_size - 1) / args.group_size;
- constexpr int min_tma_aligned_elements_scale = tma_alignment_bits / cutlass::sizeof_bits<ElementScale>::value;
- implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_scale>(cute::make_shape(scale_mn,scale_k,L), StrideScale{});
- implementable = implementable && (args.group_size == K || ((args.group_size % size<2>(TileShape{})) == 0));
- implementable = implementable && args.group_size != 0;
- implementable = implementable && (args.ptr_S != nullptr);
- if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- implementable = implementable && (args.ptr_Z == nullptr);
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) {
- constexpr int min_tma_aligned_elements_zero = tma_alignment_bits / cutlass::sizeof_bits<ElementZero>::value;
- implementable = implementable && cutlass::detail::check_alignment<min_tma_aligned_elements_zero>(cute::make_shape(scale_mn,scale_k,L), StrideScale{});
- implementable = implementable && (args.ptr_Z != nullptr);
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in can_implement.");
- }
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in can_implement.");
- }
- if (!implementable) {
- CUTLASS_TRACE_HOST(" CAN IMPLEMENT: Problem Size doesn't meet the minimum alignment requirements for TMA.\n");
- }
- return implementable;
- }
- static constexpr int K_PIPE_MAX = DispatchPolicy::Stages;
- static constexpr uint32_t TmaTransactionBytesMK = compute_tma_transaction_bytes_mk();
- static constexpr uint32_t TmaTransactionBytesNK = compute_tma_transaction_bytes_nk();
- static constexpr uint32_t TmaTransactionBytes = TmaTransactionBytesMK + TmaTransactionBytesNK;
- /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
- CUTLASS_DEVICE
- static void prefetch_tma_descriptors(Params const& mainloop_params) {
- cute::prefetch_tma_descriptor(mainloop_params.tma_load_a.get_tma_descriptor());
- cute::prefetch_tma_descriptor(mainloop_params.tma_load_b.get_tma_descriptor());
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- // Nothing extra to do
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- cute::prefetch_tma_descriptor(mainloop_params.tma_load_scale.get_tma_descriptor());
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) {
- cute::prefetch_tma_descriptor(mainloop_params.tma_load_scale.get_tma_descriptor());
- cute::prefetch_tma_descriptor(mainloop_params.tma_load_zero.get_tma_descriptor());
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in TMA prefetch.");
- }
-
- }
- // clang-format off
- // Modified from upstream, should be kept close to that when possible
- // the main difference is special handling for the prepacked A layout
- //
- // Set up the data needed by this collective for load and mma.
- // Returns a tuple of tensors. The collective and the kernel layer have the
- // contract Returned tuple must contain at least two elements, with the first
- // two elements being: gA_mkl - The tma tensor, A after a local tile so it
- // has shape (TILE_V,TILE_B,m,k,l) gB_nkl - The tma tensor, B after a local
- // tile so it has shape (TILE_N,TILE_K,n,k,l) The rest of the tensors can be
- // specified as needed by this collective.
- // NOTE: TILE_B is the prepacked block index within a tile. TILE_V is the
- // values within a prepacked block.
- template <class ProblemShape_MNKL>
- CUTLASS_DEVICE auto load_init(ProblemShape_MNKL const& problem_shape_MNKL,
- Params const& mainloop_params) const {
- using X = Underscore;
- auto M = get<0>(problem_shape_MNKL), N = get<1>(problem_shape_MNKL),
- K = get<2>(problem_shape_MNKL), L = get<3>(problem_shape_MNKL);
- // (TILE_V,TILE_B,m,k,l)
- auto make_gA_mkl = [&]() {
- // ((athrid, val), (BlocksM, BlockK), L) -> (storage_idx)
- auto layout = GmemLayoutA::TVbNbKL_to_offset(make_shape(M, K, L));
- Tensor mA_mkl = mainloop_params.tma_load_a.get_tma_tensor(shape(layout));
- return local_tile(mA_mkl,
- make_shape(size<0>(layout), PPBlocksPerTile_MK{}),
- make_coord(0, make_coord(_, _)));
- };
- // (TILE_N,TILE_K,n,k,l)
- auto make_gB_nkl = [&]() {
- Tensor mB_nkl =
- mainloop_params.tma_load_b.get_tma_tensor(make_shape(N, K, L));
- return local_tile(mB_nkl, TileShape{}, make_coord(_, _, _),
- Step<X, _1, _1>{});
- };
- // (TILE_M,TILE_Scale_K,m,scale_k,l)
- auto make_gS_mkl = [&]() {
- auto scale_k = mainloop_params.scale_k;
- Tensor mS_mkl = mainloop_params.tma_load_scale.get_tma_tensor(
- make_shape(M, scale_k, L));
- return local_tile(mS_mkl, ScaleTileShape{}, make_coord(_, _));
- };
- // (TILE_M,TILE_Scale_K,m,scale_k,l)
- auto make_gZ_mkl = [&]() {
- auto scale_k = mainloop_params.scale_k;
- Tensor mZ_mkl = mainloop_params.tma_load_zero.get_tma_tensor(
- make_shape(M, scale_k, L));
- return local_tile(mZ_mkl, ScaleTileShape{}, make_coord(_, _));
- };
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- return cute::make_tuple(make_gA_mkl(), make_gB_nkl());
- } else if constexpr (KernelConversionMode ==
- ConversionMode::ConvertAndScale) {
- return cute::make_tuple(make_gA_mkl(), make_gB_nkl(), make_gS_mkl());
- } else if constexpr (KernelConversionMode ==
- ConversionMode::ConvertAndScaleWithZero) {
- return cute::make_tuple(make_gA_mkl(), make_gB_nkl(), make_gS_mkl(),
- make_gZ_mkl());
- } else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>,
- "Conversion mode not handled in load_init.");
- }
- }
- // Similar to upstream, should be kept close to that when possible
- // the main difference is in the layout comments
- // clang-format off
- /// Perform a collective-scoped matrix multiply-accumulate
- /// Producer Perspective
- /// This overload gets triggered when we have scales.
- template <
- class... Ts,
- class KTileIterator, class BlockCoord
- >
- CUTLASS_DEVICE void
- load(
- Params const& mainloop_params,
- MainloopPipeline pipeline,
- PipelineState smem_pipe_write,
- cute::tuple<Ts...> const& load_inputs,
- BlockCoord const& blk_coord,
- KTileIterator k_tile_iter, int k_tile_count,
- int thread_idx,
- uint32_t block_rank_in_cluster,
- TensorStorage& shared_tensors) {
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- static_assert(sizeof... (Ts) == 2, "Direct convert needs two inputs");
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- static_assert(sizeof... (Ts) == 3, "Scaled convert needs three inputs");
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) {
- static_assert(sizeof... (Ts) == 4, "Scaled and zero convert needs four inputs");
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in TMA load.");
- }
- int lane_predicate = cute::elect_one_sync();
- if (lane_predicate) {
- Tensor sA_ = make_tensor(make_smem_ptr(shared_tensors.smem_A.begin()), SmemLayoutA{}); // (BLK_M,BLK_K,PIPE)
- Tensor sB_ = make_tensor(make_smem_ptr(shared_tensors.smem_B.begin()), SmemLayoutB{}); // (BLK_N,BLK_K,PIPE)
- Tensor sA = as_position_independent_swizzle_tensor(sA_); // (BLK_M,BLK_K,PIPE)
- Tensor sB = as_position_independent_swizzle_tensor(sB_); // (BLK_N,BLK_K,PIPE)
- //
- // Prepare the TMA loads for A, B and Scales
- //
-
- constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
- uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
- Tensor gA_mkl = get<0>(load_inputs);
- Tensor gB_nkl = get<1>(load_inputs);
- auto block_tma_a = mainloop_params.tma_load_a.get_slice(cluster_local_block_id.y);
- auto block_tma_b = mainloop_params.tma_load_b.get_slice(cluster_local_block_id.x);
- // Partition the inputs based on the current block coordinates.
- auto [m_coord, n_coord, k_coord, l_coord] = blk_coord;
- Tensor gA = gA_mkl(_,_,m_coord,_,l_coord); // (TILE_V,TILE_B,k)
- Tensor gB = gB_nkl(_,_,n_coord,_,l_coord); // (TILE_N,TILE_K,k)
- // Applies the mapping from block_tma_a
- Tensor tAgA = block_tma_a.partition_S(gA); // (TMA,TMA_M,TMA_K,k)
- Tensor tAsA = block_tma_a.partition_D(sA); // (TMA,TMA_M,TMA_K,PIPE)
- Tensor tBgB = block_tma_b.partition_S(gB); // (TMA,TMA_N,TMA_K,k)
- Tensor tBsB = block_tma_b.partition_D(sB); // (TMA,TMA_N,TMA_K,PIPE)
- uint16_t mcast_mask_a = 0;
- uint16_t mcast_mask_b = 0;
- uint16_t mcast_mask_s = 0;
- // Issue TmaLoads
- // Maps the tile -> block, value
- if constexpr (cute::is_same_v<GmemTiledCopyA, SM90_TMA_LOAD_MULTICAST>) {
- auto block_layout = Layout<typename DispatchPolicy::ClusterShape>{}; // (m,n) -> block_id
- for (int n = 0; n < size<1>(block_layout); ++n) {
- mcast_mask_a |= (uint16_t(1) << block_layout(cluster_local_block_id.x,n,Int<0>{}));
- }
- }
- if constexpr (cute::is_same_v<GmemTiledCopyB, SM90_TMA_LOAD_MULTICAST>) {
- auto block_layout = Layout<typename DispatchPolicy::ClusterShape>{}; // (m,n) -> block_id
- for (int m = 0; m < size<0>(block_layout); ++m) {
- mcast_mask_b |= (uint16_t(1) << block_layout(m,cluster_local_block_id.y,Int<0>{}));
- }
- }
- auto extra_input_partitions = partition_extra_tma_inputs(mainloop_params, load_inputs, shared_tensors, cluster_local_block_id, m_coord, l_coord);
- // Mainloop
- CUTLASS_PRAGMA_NO_UNROLL
- for ( ; k_tile_count > 0; --k_tile_count) {
- // LOCK smem_pipe_write for _writing_
- pipeline.producer_acquire(smem_pipe_write);
- //
- // Copy gmem to smem for *k_tile_iter
- //
- using BarrierType = typename MainloopPipeline::ProducerBarrierType;
- BarrierType* tma_barrier = pipeline.producer_get_barrier(smem_pipe_write);
- int write_stage = smem_pipe_write.index();
- copy(mainloop_params.tma_load_a.with(*tma_barrier, mcast_mask_a), tAgA(_,_,_,*k_tile_iter), tAsA(_,_,_,write_stage));
- copy(mainloop_params.tma_load_b.with(*tma_barrier, mcast_mask_b), tBgB(_,_,_,*k_tile_iter), tBsB(_,_,_,write_stage));
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- // Nothing extra to do.
- }
- else if constexpr (ModeHasScales) {
- auto tSgS = get<0>(extra_input_partitions);
- auto tSsS = get<1>(extra_input_partitions);
- // Temporary factor which will determine which k tile to reload from gmem. Needed so we don't modify tma transaction bytes
- // on the fly.
- // We must do a ceiling divide here to correctly handle with group_size == K. In that case, we don't require that K
- // is a multiple of the threadblock tile K
- const int ReloadFactor = (mainloop_params.group_size + size<2>(TileShape{}) - 1) / size<2>(TileShape{});
- const int scale_load_k = *k_tile_iter / ReloadFactor; // This will always be 0 when group_size == K.
- copy(mainloop_params.tma_load_scale.with(*tma_barrier, mcast_mask_s), tSgS(_,_,_,scale_load_k), tSsS(_,_,_,write_stage));
- if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- // Nothing extra to do
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) {
- auto tZgZ = get<2>(extra_input_partitions);
- auto tZsZ = get<3>(extra_input_partitions);
- copy(mainloop_params.tma_load_zero.with(*tma_barrier, mcast_mask_s), tZgZ(_,_,_,scale_load_k), tZsZ(_,_,_,write_stage));
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled for TMA copy op.");
- }
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled for TMA copy op.");
- }
- ++k_tile_iter;
- // Advance smem_pipe_write
- ++smem_pipe_write;
- }
- }
- }
- // clang-format off
- // Same as upstream, should be kept the same when possible, not formatted for
- // easier comparison
- // clang-format off
- // Perform a Producer Epilogue to prevent early exit of blocks in a Cluster
- CUTLASS_DEVICE void
- load_tail(MainloopPipeline pipeline, PipelineState smem_pipe_write) {
- int lane_predicate = cute::elect_one_sync();
- // Issue the epilogue waits
- if (lane_predicate) {
- /* This helps avoid early exit of blocks in Cluster
- * Waits for all stages to either be released (all
- * Consumer UNLOCKs), or if the stage was never used
- * then would just be acquired since the phase was
- * still inverted from make_producer_start_state
- */
- pipeline.producer_tail(smem_pipe_write);
- }
- }
- // clang-format on
- // Modified from upstream, should be kept close to that when possible
- // the main differences are handling the prepacked A layout, and separating
- // the loading of A from upcoverting A
- //
- // Perform a collective-scoped matrix multiply-accumulate
- // Consumer Perspective
- template <class FrgTensorC>
- CUTLASS_DEVICE void mma(MainloopPipeline pipeline,
- PipelineState smem_pipe_read, FrgTensorC& accum,
- int k_tile_count, int thread_idx,
- TensorStorage& shared_tensors,
- Params const& mainloop_params) {
- static_assert(is_rmem<FrgTensorC>::value,
- "C tensor must be rmem resident.");
- static_assert(cute::rank(SmemLayoutB{}) == 3,
- "Smem layout must be rank 3.");
- static_assert(cute::rank(SmemLayoutAtomB{}) == 2,
- "SmemLayoutAtomB must be rank 2.");
- static_assert(!cute::is_void_v<SmemCopyAtomA>,
- "SM90 GMMA mainloops must specify a non-void copy atom for "
- "RF sourced instructions.");
- static_assert(cute::is_void_v<SmemCopyAtomB>,
- "SM90 GMMA mainloops cannot have a non-void copy atom for "
- "smem sourced instructions.");
- // Obtain warp index
- int warp_idx = canonical_warp_idx_sync();
- [[maybe_unused]] int warp_group_thread_idx = thread_idx % 128;
- // ((T, (FrgV,(RestM, RestK)), (BlocksM, BlocksK), pipe) -> offset
- auto constexpr smem_A = SmemLayoutA{};
- // convert:
- // ((T, (MMA,(MMA_M, MMA_K)), (BlocksM, BlocksK), pipe) -> offset
- // to:
- // (T, MMA, ((MMA_M, BlocksM), (MMA_K, BlocksK)), pipe) -> offset
- // which can be thought of as:
- // (T, MMA, (MMA_M, MMA_K), pipe) -> offset
- auto constexpr smem_A_mma_ =
- make_layout(get<0, 0>(smem_A), get<0, 1, 0>(smem_A),
- zip(get<0, 1, 1>(smem_A), get<1>(smem_A)), get<2>(smem_A));
- // flatten to:
- // (T, MMA, MMA_M, MMA_K, pipe) -> offset
- auto constexpr smem_A_mma = smem_A_mma_(_, _, make_coord(_, _), _);
- Tensor sA = make_tensor(make_smem_ptr(shared_tensors.smem_A.begin()),
- smem_A_mma); // (T, MMA, MMA_M, MMA_K, pipe)
- Tensor sB = make_tensor(make_smem_ptr(shared_tensors.smem_B.begin()),
- SmemLayoutB{}); // (BLK_N,BLK_K,PIPE)
- //
- // Define C accumulators and A/B partitioning
- //
- TiledMma tiled_mma;
- auto thread_mma = tiled_mma.get_thread_slice(thread_idx);
- Tensor tCsA = sA(thread_idx, _, _, _, _); // (MMA,MMA_M,MMA_K,PIPE)
- Tensor tCsB = thread_mma.partition_B(sB); // (MMA,MMA_N,MMA_K,PIPE)
- // Allocate fragments and descriptors
- Tensor tCrA_load = make_tensor<ElementA>(
- tCsA(_, _, _, Int<0>{}).shape()); // (MMA,MMA_N,MMA_K)
- Tensor tCrA_mma = make_fragment_like<ElementMma>(tCrA_load);
- Tensor tCrB = thread_mma.make_fragment_B(tCsB); // (MMA,MMA_N,MMA_K,PIPE)
- static constexpr int A_CPY_VEC =
- decltype(max_common_vector(tCsA, tCrA_load)){};
- static constexpr int COVERSION_WIDTH =
- std::min(A_CPY_VEC, int(size<0>(tCrA_mma)));
- auto load_A_to_registers = [&](int read_stage) {
- copy(create_auto_vectorizing_copy<ElementA, decltype(A_CPY_VEC)>(),
- tCsA(_, _, _, read_stage), tCrA_load(_, _, _));
- };
- // Partition of thread -> shared and thread -> RF
- auto partitioned_extra_info =
- partition_extra_mma_info(thread_mma, shared_tensors);
- auto copy_partitions_extra_info = retile_extra_mma_info(
- tiled_mma, partitioned_extra_info, warp_group_thread_idx);
- CUTE_STATIC_ASSERT_V(size<1>(tCrA_mma) == size<1>(accum)); // MMA_M
- CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<2>(accum)); // N
- CUTE_STATIC_ASSERT_V(size<2>(tCsA) == size<2>(tCsB)); // K
- CUTE_STATIC_ASSERT_V(size<3>(tCsA) == size<3>(tCsB)); // PIPE
- CUTE_STATIC_ASSERT_V(Int<DispatchPolicy::Stages>{} == size<2>(sB)); // PIPE
- //
- // PIPELINED MAIN LOOP
- //
- auto convert_A = [&, a_vec = Int<COVERSION_WIDTH>{}](int k_block,
- int read_stage) {
- load_extra_info_to_registers(partitioned_extra_info,
- copy_partitions_extra_info, k_block,
- read_stage);
- transform_A_kblock(tCrA_load, a_vec, tCrA_mma, partitioned_extra_info,
- k_block);
- };
- // We release buffers to producer warps(dma load) with some mmas in flight
- PipelineState smem_pipe_release = smem_pipe_read;
- tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
- warpgroup_fence_operand(accum);
- constexpr int K_BLOCK_MAX = size<2>(tCrA_load);
- ConsumerToken barrier_token = {BarrierStatus::WaitAgain};
- // first k tile
- {
- barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
- pipeline.consumer_wait(smem_pipe_read, barrier_token);
- int read_stage = smem_pipe_read.index();
- ++smem_pipe_read;
- barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
- // copy smem->rmem for A operand
- load_A_to_registers(read_stage);
- convert_A(0, read_stage);
- // Unroll the K mode manually to set scale D to 1
- CUTLASS_PRAGMA_UNROLL
- for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block) {
- if (k_block < K_BLOCK_MAX - 1) {
- convert_A(k_block + 1, smem_pipe_read.index());
- }
- warpgroup_arrive();
- // (V,M) x (V,N) => (V,M,N)
- cute::gemm(tiled_mma, tCrA_mma(_, _, k_block),
- tCrB(_, _, k_block, read_stage), accum);
- tiled_mma.accumulate_ = GMMA::ScaleOut::One;
- warpgroup_commit_batch();
- }
- --k_tile_count;
- if (k_tile_count > 0) {
- // Wait for K_BLOCK_MAX - 1 to be in flight to ensure that it is safe to
- // overwrite the A registers for the first mma.
- warpgroup_wait<K_BLOCK_MAX - 1>();
- pipeline.consumer_wait(smem_pipe_read, barrier_token);
- load_A_to_registers(smem_pipe_read.index());
- convert_A(0, smem_pipe_read.index());
- }
- }
- if (k_tile_count == 0) {
- return;
- }
- warpgroup_fence_operand(accum);
- // Mainloop GMMAs
- CUTLASS_PRAGMA_NO_UNROLL
- for (; k_tile_count > 1; --k_tile_count) {
- //
- // Compute on k_tile
- //
- int read_stage = smem_pipe_read.index();
- ++smem_pipe_read;
- warpgroup_fence_operand(accum);
- // Unroll the K mode manually to set scale D to 1
- CUTLASS_PRAGMA_UNROLL
- for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block) {
- warpgroup_arrive();
- // (V,M) x (V,N) => (V,M,N)
- cute::gemm(tiled_mma, tCrA_mma(_, _, k_block),
- tCrB(_, _, k_block, read_stage), accum);
- tiled_mma.accumulate_ = GMMA::ScaleOut::One;
- warpgroup_commit_batch();
- warpgroup_wait<K_BLOCK_MAX - 1>();
- if (k_block == K_BLOCK_MAX - 1) {
- // We have K_BLOCK_MAX - 1 GMMA instructions pending for this stage,
- // so we can release prior barrier
- pipeline.consumer_release(
- smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_
- // on it
- ++smem_pipe_release;
- }
- if (k_block == 0) {
- barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
- }
- if (k_block == K_BLOCK_MAX - 1) {
- pipeline.consumer_wait(smem_pipe_read, barrier_token);
- load_A_to_registers(smem_pipe_read.index());
- convert_A(0, smem_pipe_read.index());
- } else {
- convert_A(k_block + 1, read_stage);
- }
- }
- warpgroup_fence_operand(accum);
- }
- warpgroup_fence_operand(accum);
- {
- //
- // Compute on k_tile
- //
- int read_stage = smem_pipe_read.index();
- warpgroup_fence_operand(accum);
- // Unroll the K mode manually to set scale D to 1
- CUTLASS_PRAGMA_UNROLL
- for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block) {
- warpgroup_arrive();
- // (V,M) x (V,N) => (V,M,N)
- cute::gemm(tiled_mma, tCrA_mma(_, _, k_block),
- tCrB(_, _, k_block, read_stage), accum);
- tiled_mma.accumulate_ = GMMA::ScaleOut::One;
- warpgroup_commit_batch();
- warpgroup_wait<K_BLOCK_MAX - 1>();
- if (k_block == K_BLOCK_MAX - 1) {
- // release prior barrier
- pipeline.consumer_release(
- smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_
- // on it
- ++smem_pipe_release;
- }
- if (k_block < K_BLOCK_MAX - 1) {
- convert_A(k_block + 1, read_stage);
- }
- }
- }
- warpgroup_fence_operand(accum);
- }
- // Perform a Consumer Epilogue to release all buffers
- CUTLASS_DEVICE void mma_tail(MainloopPipeline pipeline,
- PipelineState smem_pipe_release,
- int k_tile_count) {
- // Prologue GMMAs
- int prologue_mma_count = 1;
- k_tile_count -= prologue_mma_count;
- smem_pipe_release.advance(k_tile_count);
- // Wait on all GMMAs to complete
- warpgroup_wait<0>();
- for (int count = 0; count < prologue_mma_count; ++count) {
- pipeline.consumer_release(
- smem_pipe_release); // UNLOCK smem_pipe_release, done _computing_ on
- // it
- ++smem_pipe_release;
- }
- }
- private:
- // Same as upstream, should be kept the same when possible, not formatted for
- // easier comparison
- // clang-format off
- /// Utilities for any additional inputs inside of the TMA load
- template <class... Ts>
- CUTLASS_DEVICE
- auto partition_extra_tma_inputs(
- Params const& mainloop_params,
- cute::tuple<Ts...> const& load_inputs,
- TensorStorage& shared_tensors,
- uint2 const& cluster_local_block_id,
- int const m_coord,
- int const l_coord) {
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- return cute::make_tuple();
- }
- else if constexpr (ModeHasScales) {
- Tensor sS = make_tensor(make_smem_ptr(shared_tensors.smem_scale.begin()), SmemLayoutScale{}); // (BLK_M,BLK_K,PIPE)
- Tensor gS_mkl = get<2>(load_inputs);
- auto block_tma_s = mainloop_params.tma_load_scale.get_slice(cluster_local_block_id.y);
- Tensor gS = gS_mkl(_,_,m_coord,_,l_coord); // (BLK_M,BLK_K,k)
- Tensor tSgS = block_tma_s.partition_S(gS); // (TMA,TMA_M,TMA_K,k)
- Tensor tSsS = block_tma_s.partition_D(sS); // (TMA,TMA_M,TMA_K,PIPE)
- if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- return cute::make_tuple(tSgS, tSsS);
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) {
- Tensor sZ = make_tensor(make_smem_ptr(shared_tensors.smem_zero.begin()), SmemLayoutScale{}); // (BLK_M,BLK_K,PIPE)
- Tensor gZ_mkl = get<3>(load_inputs);
- auto block_tma_z = mainloop_params.tma_load_zero.get_slice(cluster_local_block_id.y);
- Tensor gZ = gZ_mkl(_,_,m_coord,_,l_coord); // (BLK_M,BLK_K,k)
- Tensor tZgZ = block_tma_z.partition_S(gZ); // (TMA,TMA_M,TMA_K,k)
- Tensor tZsZ = block_tma_z.partition_D(sZ); // (TMA,TMA_M,TMA_K,PIPE)
- return cute::make_tuple(tSgS, tSsS, tZgZ, tZsZ);
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled for input partitioning.");
- }
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled for input partitioning.");
- }
- }
- // clang-format off
- // Same as upstream, should be kept the same when possible, not formatted for
- // easier comparison
- // clang-format off
- /// Utilities for partitioning extra inputs for loading from smem in the mainloop.
- template <class ThreadMma>
- CUTLASS_DEVICE
- auto partition_extra_mma_info(
- ThreadMma const& mma_thread_slice,
- TensorStorage& shared_tensors) {
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- // nothing to do
- return cute::make_tuple();
- }
- else if constexpr (ModeHasScales) {
- Tensor sS = make_tensor(make_smem_ptr(shared_tensors.smem_scale.begin()), SmemLayoutScale{});// (BLK_M,BLK_SCALE_K,PIPE)
- Tensor tCsS = mma_thread_slice.partition_A(sS);
- Tensor tCrS = make_tensor<ElementScale>(mma_thread_slice.partition_fragment_A(sS(_,_,Int<0>{})).shape());
- if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- return cute::make_tuple(tCsS, tCrS);
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) {
- Tensor sZ = make_tensor(make_smem_ptr(shared_tensors.smem_zero.begin()), SmemLayoutScale{});// (BLK_M,BLK_SCALE_K,PIPE)
- Tensor tCsZ = mma_thread_slice.partition_A(sZ);
- Tensor tCrZ = make_tensor<ElementZero>(mma_thread_slice.partition_fragment_A(sZ(_,_,Int<0>{})).shape());
- return cute::make_tuple(tCsS, tCrS, tCsZ, tCrZ);
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path.");
- }
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path.");
- }
- }
- // clang-format on
- // Same as upstream, should be kept the same when possible, not formatted for
- // easier comparison
- // clang-format off
- /// Returns the tiled copy and copy views for the extra inputs.
- template <class TiledMma, class... Ts>
- CUTLASS_DEVICE
- auto retile_extra_mma_info(
- TiledMma const& tiled_mma,
- cute::tuple<Ts...>& partitioned_extra_info,
- int const warp_group_thread_idx) {
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- // nothing to do
- return cute::make_tuple();
- }
- else if constexpr (ModeHasScales) {
- auto smem_tiled_copy_S = make_tiled_copy_A(SmemCopyAtomScale{}, tiled_mma);
- auto smem_thr_copy_S = smem_tiled_copy_S.get_thread_slice(warp_group_thread_idx);
- Tensor tCrS_copy_view = smem_thr_copy_S.retile_D(cute::get<1>(partitioned_extra_info)); // (CPY,CPY_M,CPY_K)
-
- if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- return cute::make_tuple(smem_tiled_copy_S, tCrS_copy_view);
- }
- else if constexpr (KernelConversionMode == ConversionMode::ConvertAndScaleWithZero) {
- Tensor tCrZ_copy_view = smem_thr_copy_S.retile_D(cute::get<3>(partitioned_extra_info)); // (CPY,CPY_M,CPY_K)
- return cute::make_tuple(smem_tiled_copy_S, tCrS_copy_view, tCrZ_copy_view);
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path.");
- }
- }
- else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>, "Conversion mode not handled in A -> RF path.");
- }
- }
- // clang-format on
- // Similar to `copy_A_and_extra_info` upstream, should be kept the same when
- // possible
- // the main differences this only loads the extra info into registers and
- // not A (since we now preload more of A in the main pipeline)
- // Load scales and zeros into registers if required
- template <class... Ts, class... Us>
- CUTLASS_DEVICE void load_extra_info_to_registers(
- cute::tuple<Ts...> const& partitioned_mma_extra_info,
- cute::tuple<Us...> const& tiled_copy_and_views, int k_block,
- int read_stage) {
- if (k_block == 0) {
- // We are starting a new k-tile so copy the scale
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- // nothing to do
- } else if constexpr (ModeHasScales) {
- auto smem_tiled_copy_S = cute::get<0>(tiled_copy_and_views);
- auto tCrS_copy_view = cute::get<1>(tiled_copy_and_views);
- auto tCsS = cute::get<0>(partitioned_mma_extra_info);
- copy(smem_tiled_copy_S, tCsS(_, _, k_block, read_stage),
- tCrS_copy_view(_, _, k_block));
- if constexpr (KernelConversionMode == ConversionMode::ConvertAndScale) {
- // Nothing extra to do
- } else if constexpr (KernelConversionMode ==
- ConversionMode::ConvertAndScaleWithZero) {
- auto tCsZ = cute::get<2>(partitioned_mma_extra_info);
- auto tCrZ_copy_view = cute::get<2>(tiled_copy_and_views);
- copy(smem_tiled_copy_S, tCsZ(_, _, k_block, read_stage),
- tCrZ_copy_view(_, _, k_block));
- } else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>,
- "Conversion mode not handled in A -> RF path.");
- }
- } else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>,
- "Conversion mode not handled in A -> RF path.");
- }
- }
- }
- // Similar to upstream, should be kept the same when possible.
- // the main differences are that `convert_tensor` supports interleaved
- // layouts and bfloat16 has been optimized. `transform_internal_A` has also
- // been inlined for code simplicity.
- // Utilities to transform A.
- template <class TCrA_load, int VectorWidthA, class TCrA_mma, class... Ts>
- CUTLASS_DEVICE void transform_A_kblock(
- TCrA_load const& tCrA_load, cute::Int<VectorWidthA> vec_A,
- TCrA_mma& tCrA_mma, cute::tuple<Ts...> const& partitioned_extra_info,
- int const k_block) {
- auto in = tCrA_load(_, _, k_block);
- auto out = tCrA_mma(_, _, k_block);
- if constexpr (KernelConversionMode == ConversionMode::DirectConvert) {
- convert_tensor<IlvdBlkLayout>(in, out, vec_A);
- } else if constexpr (ModeHasScales) {
- auto tCrS = cute::get<1>(partitioned_extra_info);
- auto converted_inputs =
- make_fragment_like<ElementScale>(tCrA_mma)(_, _, k_block);
- auto scales = tCrS(_, _, 0);
- // First, we upcast the inputs to the scale type
- convert_tensor<IlvdBlkLayout>(in, converted_inputs, vec_A);
- // Apply scales and broadcast across inputs, store in converted_inputs
- // We need to cast to nv_bfloat16 for the multiply since
- // `cutlass::bfloat16_t` has an overloaded operator* that upconverts to
- // float, which nvcc will not optimize to using vectorized fma
- // instructions (i.e. hfma.bf16_v2)
- if constexpr (std::is_same_v<ElementScale, cutlass::bfloat16_t>) {
- cute::transform(
- recast<nv_bfloat16>(converted_inputs), recast<nv_bfloat16>(scales),
- recast<nv_bfloat16>(converted_inputs), cute::multiplies{});
- } else {
- cute::transform(converted_inputs, scales, converted_inputs,
- cute::multiplies{});
- }
- // Apply zeros if required
- if constexpr (KernelConversionMode ==
- ConversionMode::ConvertAndScaleWithZero) {
- auto tCrZ = cute::get<3>(partitioned_extra_info);
- auto converted_zeros = make_fragment_like<ElementScale>(tCrZ)(_, _, 0);
- convert_tensor<void>(tCrZ(_, _, 0), converted_zeros);
- if constexpr (std::is_same_v<ElementScale, cutlass::bfloat16_t>) {
- cute::transform(recast<nv_bfloat16>(converted_inputs),
- recast<nv_bfloat16>(converted_zeros),
- recast<nv_bfloat16>(converted_inputs), cute::plus{});
- } else {
- cute::transform(converted_inputs, converted_zeros, converted_inputs,
- cute::plus{});
- }
- }
- // Finally, we convert the scaled inputs to the mma type.
- convert_tensor<void>(converted_inputs, out);
- } else {
- static_assert(cutlass::detail::dependent_false<KernelSchedule>,
- "No A data is loaded.");
- }
- }
- // Modified from upstream, should be kept the same when possible
- // the main differences is that this version supports interleaved converts
- // Utilities for transforming the A operand prior to issuing tensorcore math.
- template <typename IlvdBlkLayout, class EngineIn, class EngineOut,
- class TensorLayout,
- int ConversionVectorWidth = cosize_v<TensorLayout>>
- CUTLASS_DEVICE void convert_tensor(
- Tensor<EngineIn, TensorLayout> const& in,
- Tensor<EngineOut, TensorLayout>& out,
- cute::Int<ConversionVectorWidth> width = {}) {
- // This is an element-wise conversion where we expect both tensors to have
- // the same layout. As a result, we can cast as a cutlass array to use the
- // fast numeric converters without worrying about indexing into the layout.
- constexpr int N = cosize_v<TensorLayout>;
- // The inputs must be backed by registers & be statically sized.
- static_assert(is_rmem<EngineIn>::value,
- "Input tensor for A conversion must come from registers");
- static_assert(is_rmem<EngineOut>::value,
- "Output tensor for A conversion must come from registers");
- static_assert(is_static_v<TensorLayout>,
- "Tensor layout for the conversion must be static");
- static_assert(cosize_v<TensorLayout> == size(TensorLayout{}),
- "Cosize and size of the layout must be equal.");
- static_assert(
- N % ConversionVectorWidth == 0,
- "Conversion vector width must divide cosize of the tensor layout.");
- using SrcType = typename EngineIn::value_type;
- using DstType = typename EngineOut::value_type;
- using SrcArray = cutlass::Array<SrcType, ConversionVectorWidth>;
- using DstArray = cutlass::Array<DstType, ConversionVectorWidth>;
- constexpr cutlass::FloatRoundStyle RoundStyle =
- cutlass::FloatRoundStyle::round_to_nearest;
- using Converter = cutlass::InterleavedNumericArrayConverter<
- IlvdBlkLayout, DstType, SrcType, ConversionVectorWidth, RoundStyle>;
- constexpr int NumIterations = N / ConversionVectorWidth;
- for (int ii = 0; ii < NumIterations; ++ii) {
- SrcArray const* src_array_ptr =
- reinterpret_cast<SrcArray const*>(raw_pointer_cast(in.data())) + ii;
- DstArray* dst_array_ptr =
- reinterpret_cast<DstArray*>(raw_pointer_cast(out.data())) + ii;
- *dst_array_ptr = Converter::convert(*src_array_ptr);
- }
- }
- };
- } // namespace machete
|