1
0

outlines_logits_processors.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. # Copyright 2024- the Outlines developers
  2. # This file is adapted from
  3. # https://github.com/outlines-dev/outlines/blob/main/outlines/serve/vllm.py
  4. #
  5. # Licensed under the Apache License, Version 2.0 (the "License");
  6. # you may not use this file except in compliance with the License.
  7. # You may obtain a copy of the License at
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import copy
  15. import json
  16. import math
  17. from collections import defaultdict
  18. from functools import lru_cache
  19. from typing import Callable, DefaultDict, Dict, List, Union
  20. import torch
  21. from pydantic import BaseModel
  22. from transformers import PreTrainedTokenizerBase
  23. from aphrodite.triton_utils import HAS_TRITON
  24. if HAS_TRITON:
  25. from outlines.caching import cache
  26. from outlines.fsm.guide import CFGGuide, Generate, Guide, RegexGuide, Write
  27. from outlines.fsm.json_schema import build_regex_from_schema
  28. class BaseLogitsProcessor:
  29. def __init__(self, guide: Guide):
  30. self._guide: Guide = guide
  31. self._fsm_state: DefaultDict[int, int] = defaultdict(int)
  32. def __call__(self, input_ids: List[int],
  33. scores: torch.Tensor) -> torch.Tensor:
  34. """Use the FSM to bias the logits before sampling the next token."""
  35. seq_id = hash(tuple(input_ids))
  36. if len(input_ids) > 0:
  37. last_token = input_ids[-1]
  38. last_seq_id = hash(tuple(input_ids[:-1]))
  39. self._fsm_state[seq_id] = self._guide.get_next_state(
  40. state=self._fsm_state[last_seq_id], token_id=last_token)
  41. instruction = self._guide.get_next_instruction(
  42. state=self._fsm_state[seq_id])
  43. if type(instruction) == Generate:
  44. allowed_tokens = instruction.tokens
  45. elif type(instruction) == Write:
  46. # TODO: support fast forward tokens
  47. allowed_tokens = [instruction.tokens[0]]
  48. else:
  49. raise TypeError(
  50. f"Unsupported instruction type {type(instruction)}")
  51. mask = torch.full((scores.shape[-1], ),
  52. -math.inf,
  53. device=scores.device)
  54. mask[allowed_tokens] = 0
  55. scores.add_(mask)
  56. return scores
  57. class RegexLogitsProcessor(BaseLogitsProcessor):
  58. @classmethod
  59. @cache()
  60. def _get_guide(cls, regex_string: str,
  61. tokenizer: PreTrainedTokenizerBase) -> Guide:
  62. tokenizer = _adapt_tokenizer(tokenizer)
  63. return RegexGuide(regex_string, tokenizer)
  64. def __init__(self, regex_string: str, tokenizer: PreTrainedTokenizerBase):
  65. """Compile the FSM that drives the regex-structured generation.
  66. Parameters
  67. ----------
  68. regex_string
  69. A string that represents a regular expression
  70. tokenizer
  71. The model's tokenizer
  72. """
  73. super().__init__(
  74. RegexLogitsProcessor._get_guide(regex_string, tokenizer))
  75. class JSONLogitsProcessor(RegexLogitsProcessor):
  76. def __init__(self, schema: Union[str, Dict, BaseModel],
  77. tokenizer: PreTrainedTokenizerBase,
  78. whitespace_pattern: Union[str, None]):
  79. """Compile the FSM that drives the JSON-guided generation.
  80. Parameters
  81. ----------
  82. schema
  83. A JSON schema that encodes the structure we want the model to
  84. generate
  85. tokenizer
  86. The model's tokenizer
  87. whitespace_pattern
  88. Pattern to use for JSON syntactic whitespace (doesn't impact
  89. string literals)
  90. Example: allow only a single space or newline with
  91. `whitespace_pattern=r"[\n ]?"`
  92. """
  93. if isinstance(schema, type(BaseModel)):
  94. schema_str = json.dumps(schema.model_json_schema())
  95. elif isinstance(schema, Dict):
  96. schema_str = json.dumps(schema)
  97. elif isinstance(schema, str):
  98. schema_str = schema
  99. else:
  100. raise ValueError(
  101. f"Cannot parse schema {schema}. The schema must be either "
  102. f"a Pydantic object, a dictionary or a string that contains "
  103. f"the JSON Schema specification")
  104. regex_string = build_regex_from_schema(schema_str, whitespace_pattern)
  105. super().__init__(regex_string, tokenizer)
  106. class CFGLogitsProcessor(BaseLogitsProcessor):
  107. @classmethod
  108. @cache()
  109. def _get_guide(cls, cfg: str, tokenizer: PreTrainedTokenizerBase) -> Guide:
  110. tokenizer = _adapt_tokenizer(tokenizer)
  111. return CFGGuide(cfg, tokenizer)
  112. def __init__(self, cfg: str, tokenizer: PreTrainedTokenizerBase):
  113. """Compile the FSM that drives the context free grammar generation.
  114. Parameters
  115. ----------
  116. cfg
  117. A string that represents a context-free grammar
  118. tokenizer
  119. The model's tokenizer
  120. """
  121. super().__init__(CFGLogitsProcessor._get_guide(cfg, tokenizer))
  122. self._guide = self._guide.copy()
  123. @lru_cache(maxsize=32)
  124. def _adapt_tokenizer(tokenizer: PreTrainedTokenizerBase):
  125. """Adapt Aphrodite's tokenizer to use to compile the FSM.
  126. The API of Outlines tokenizers is slightly different to that of
  127. `transformers`. The decoder of outlines, returns a list whereas
  128. the decode of Aphrodite returns an str. To sync the Aphrodite decoder with
  129. outlines internal api, the decoder should be adapted. In addition
  130. we need to handle the missing spaces to Llama's tokenizer to be
  131. able to compile FSMs for this model.
  132. """
  133. if getattr(tokenizer, "_outlines_adapted", False):
  134. return tokenizer
  135. tokenizer = copy.deepcopy(tokenizer)
  136. tokenizer.vocabulary = tokenizer.get_vocab()
  137. tokenizer.special_tokens = set(tokenizer.all_special_tokens)
  138. def convert_token_to_string(token: str) -> str:
  139. from transformers.file_utils import SPIECE_UNDERLINE
  140. string = tokenizer.convert_tokens_to_string([token])
  141. # A hack to handle missing spaces to HF's Llama tokenizers
  142. if token.startswith(SPIECE_UNDERLINE) or token == "<0x20>":
  143. return " " + string
  144. return string
  145. def change_decoder(
  146. decoder: Callable[[List[int]],
  147. str]) -> Callable[[List[int]], List[str]]:
  148. """Sync Aphrodite's decoder with the outlines by returning list."""
  149. def new_decoder(inp_tokens: List[int]) -> List[str]:
  150. return [decoder(inp_tokens)]
  151. return new_decoder
  152. tokenizer.convert_token_to_string = convert_token_to_string
  153. tokenizer.decode = change_decoder(tokenizer.decode)
  154. setattr(tokenizer, "_outlines_adapted", True) # noqa: B010
  155. return tokenizer