123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- import weakref
- from typing import List
- import pytest
- from aphrodite import LLM, RequestOutput, SamplingParams
- from ...conftest import cleanup
- from ..openai.test_vision import TEST_IMAGE_URLS
- MODEL_NAME = "facebook/opt-125m"
- PROMPTS = [
- "Hello, my name is",
- "The president of the United States is",
- "The capital of France is",
- "The future of AI is",
- ]
- TOKEN_IDS = [
- [0],
- [0, 1],
- [0, 2, 1],
- [0, 3, 1, 2],
- ]
- @pytest.fixture(scope="module")
- def llm():
- # pytest caches the fixture so we use weakref.proxy to
- # enable garbage collection
- llm = LLM(model=MODEL_NAME,
- max_num_batched_tokens=4096,
- tensor_parallel_size=1,
- gpu_memory_utilization=0.10,
- enforce_eager=True)
- with llm.deprecate_legacy_api():
- yield weakref.proxy(llm)
- del llm
- cleanup()
- def assert_outputs_equal(o1: List[RequestOutput], o2: List[RequestOutput]):
- assert [o.outputs for o in o1] == [o.outputs for o in o2]
- @pytest.mark.skip_global_cleanup
- @pytest.mark.parametrize('prompt', PROMPTS)
- def test_v1_v2_api_consistency_single_prompt_string(llm: LLM, prompt):
- sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
- with pytest.warns(DeprecationWarning, match="'prompts'"):
- v1_output = llm.generate(prompts=prompt,
- sampling_params=sampling_params)
- v2_output = llm.generate(prompt, sampling_params=sampling_params)
- assert_outputs_equal(v1_output, v2_output)
- v2_output = llm.generate({"prompt": prompt},
- sampling_params=sampling_params)
- assert_outputs_equal(v1_output, v2_output)
- @pytest.mark.skip_global_cleanup
- @pytest.mark.parametrize('prompt_token_ids', TOKEN_IDS)
- def test_v1_v2_api_consistency_single_prompt_tokens(llm: LLM,
- prompt_token_ids):
- sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
- with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
- v1_output = llm.generate(prompt_token_ids=prompt_token_ids,
- sampling_params=sampling_params)
- v2_output = llm.generate({"prompt_token_ids": prompt_token_ids},
- sampling_params=sampling_params)
- assert_outputs_equal(v1_output, v2_output)
- @pytest.mark.skip_global_cleanup
- def test_v1_v2_api_consistency_multi_prompt_string(llm: LLM):
- sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
- with pytest.warns(DeprecationWarning, match="'prompts'"):
- v1_output = llm.generate(prompts=PROMPTS,
- sampling_params=sampling_params)
- v2_output = llm.generate(PROMPTS, sampling_params=sampling_params)
- assert_outputs_equal(v1_output, v2_output)
- v2_output = llm.generate(
- [{
- "prompt": p
- } for p in PROMPTS],
- sampling_params=sampling_params,
- )
- assert_outputs_equal(v1_output, v2_output)
- @pytest.mark.skip_global_cleanup
- def test_v1_v2_api_consistency_multi_prompt_tokens(llm: LLM):
- sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
- with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
- v1_output = llm.generate(prompt_token_ids=TOKEN_IDS,
- sampling_params=sampling_params)
- v2_output = llm.generate(
- [{
- "prompt_token_ids": p
- } for p in TOKEN_IDS],
- sampling_params=sampling_params,
- )
- assert_outputs_equal(v1_output, v2_output)
- @pytest.mark.skip_global_cleanup
- def test_multiple_sampling_params(llm: LLM):
- sampling_params = [
- SamplingParams(temperature=0.01, top_p=0.95),
- SamplingParams(temperature=0.3, top_p=0.95),
- SamplingParams(temperature=0.7, top_p=0.95),
- SamplingParams(temperature=0.99, top_p=0.95),
- ]
- # Multiple SamplingParams should be matched with each prompt
- outputs = llm.generate(PROMPTS, sampling_params=sampling_params)
- assert len(PROMPTS) == len(outputs)
- # Exception raised, if the size of params does not match the size of prompts
- with pytest.raises(ValueError):
- outputs = llm.generate(PROMPTS, sampling_params=sampling_params[:3])
- # Single SamplingParams should be applied to every prompt
- single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
- outputs = llm.generate(PROMPTS, sampling_params=single_sampling_params)
- assert len(PROMPTS) == len(outputs)
- # sampling_params is None, default params should be applied
- outputs = llm.generate(PROMPTS, sampling_params=None)
- assert len(PROMPTS) == len(outputs)
- def test_chat():
- llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
- prompt1 = "Explain the concept of entropy."
- messages = [
- {
- "role": "system",
- "content": "You are a helpful assistant"
- },
- {
- "role": "user",
- "content": prompt1
- },
- ]
- outputs = llm.chat(messages)
- assert len(outputs) == 1
- @pytest.mark.parametrize("image_urls",
- [[TEST_IMAGE_URLS[0], TEST_IMAGE_URLS[1]]])
- def test_chat_multi_image(image_urls: List[str]):
- llm = LLM(
- model="microsoft/Phi-3.5-vision-instruct",
- dtype="bfloat16",
- max_model_len=4096,
- max_num_seqs=5,
- enforce_eager=True,
- trust_remote_code=True,
- limit_mm_per_prompt={"image": 2},
- )
- messages = [{
- "role":
- "user",
- "content": [
- *({
- "type": "image_url",
- "image_url": {
- "url": image_url
- }
- } for image_url in image_urls),
- {
- "type": "text",
- "text": "What's in this image?"
- },
- ],
- }]
- outputs = llm.chat(messages)
- assert len(outputs) >= 0
|