1
0

config.mts 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. import { defineConfig } from 'vitepress';
  2. export default defineConfig({
  3. title: "Aphrodite Engine",
  4. head: [['link', { rel: 'icon', href: '/favicon.ico' }]],
  5. description: "User and Developer Documentation",
  6. themeConfig: {
  7. // nav: [{ text: "Home", link: "/" }],
  8. sidebar: [
  9. {
  10. text: "Installation",
  11. link: "/pages/installation",
  12. items: [
  13. {
  14. text: "NVIDIA GPU",
  15. link: "/pages/installation/installation",
  16. },
  17. {
  18. text: "AMD GPU",
  19. link: "/pages/installation/installation-rocm",
  20. },
  21. {
  22. text: "CPU",
  23. link: "/pages/installation/installation-cpu",
  24. },
  25. {
  26. text: "AWS Trainium1 & Inferentia2",
  27. link: "/pages/installation/installation-neuron",
  28. },
  29. {
  30. text: "Google TPU",
  31. link: "/pages/installation/installation-tpu",
  32. },
  33. {
  34. text: "Intel XPU",
  35. link: "/pages/installation/installation-xpu",
  36. },
  37. ],
  38. },
  39. {
  40. text: "Usage",
  41. link: "/pages/usage",
  42. items: [
  43. {
  44. text: "Quick Start",
  45. link: "/pages/usage/getting-started",
  46. },
  47. {
  48. text: "Debugging Instructions",
  49. link: "/pages/usage/debugging",
  50. },
  51. {
  52. text: "OpenAI API",
  53. link: "/pages/usage/openai",
  54. },
  55. {
  56. text: "Vision Language Models",
  57. link: "/pages/usage/vlm",
  58. },
  59. {
  60. text: "Encoder-Decoder Models",
  61. link: "/pages/usage/encoder-decoder",
  62. },
  63. {
  64. text: "Distributed Inference",
  65. link: "/pages/usage/distributed",
  66. },
  67. {
  68. text: "Production Metrics",
  69. link: "/pages/usage/metrics",
  70. },
  71. {
  72. text: "Supported Models",
  73. link: "/pages/usage/models",
  74. },
  75. ]
  76. },
  77. {
  78. text: "Quantization",
  79. link: "/pages/quantization",
  80. items: [
  81. {
  82. text: "Support Overview",
  83. link: "/pages/quantization/support-matrix",
  84. },
  85. {
  86. text: "Quantization Methods",
  87. link: "/pages/quantization/quantization-methods",
  88. },
  89. {
  90. text: "KV Cache Quantization",
  91. link: "/pages/quantization/kv-cache",
  92. },
  93. ],
  94. },
  95. {
  96. text: "Prompt Caching",
  97. link: "/pages/prompt-caching",
  98. items: [
  99. {
  100. text: "Overview",
  101. link: "/pages/prompt-caching/introduction",
  102. },
  103. {
  104. text: "Implementation",
  105. link: "/pages/prompt-caching/implementation",
  106. },
  107. ],
  108. },
  109. {
  110. text: "Speculative Decoding",
  111. link: "/pages/spec-decoding",
  112. items: [
  113. {
  114. text: "Overview",
  115. link: "/pages/spec-decoding/overview",
  116. },
  117. {
  118. text: "Draft Model Decoding",
  119. link: "/pages/spec-decoding/draft-model",
  120. },
  121. {
  122. text: "Ngram Prompt Lookup",
  123. link: "/pages/spec-decoding/ngram",
  124. },
  125. {
  126. text: "MLPSpeculator",
  127. link: "/pages/spec-decoding/mlpspeculator",
  128. },
  129. ],
  130. },
  131. {
  132. text: "Model Adapters",
  133. link: "/pages/adapters",
  134. items: [
  135. {
  136. text: "LoRA",
  137. link: "/pages/adapters/lora",
  138. },
  139. {
  140. text: "Soft Prompts",
  141. link: "/pages/adapters/soft-prompts",
  142. },
  143. ]
  144. },
  145. {
  146. text: "Developer Documentation",
  147. link: "/pages/developer",
  148. items: [
  149. {
  150. text: "Adding a New Model",
  151. link: "/pages/developer/adding-model",
  152. },
  153. {
  154. text: "Adding Multimodal Capabilities",
  155. link: "/pages/developer/multimodal",
  156. },
  157. {
  158. text: "Input Processing",
  159. link: "/pages/developer/input-processing",
  160. },
  161. {
  162. text: "Paged Attention",
  163. link: "/pages/developer/paged-attention",
  164. },
  165. {
  166. text: "NVIDIA CUTLASS Epilogues",
  167. link: "/pages/developer/cutlass-epilogue",
  168. },
  169. {
  170. text: "Adding a Custom Class in PyTorch",
  171. link: "/pages/developer/torch-custom-class"
  172. },
  173. ],
  174. },
  175. ],
  176. socialLinks: [
  177. { icon: "github", link: "https://github.com/PygmalionAI/aphrodite-engine" },
  178. ],
  179. search: {
  180. provider: "local",
  181. options: {
  182. detailedView: true,
  183. },
  184. },
  185. },
  186. markdown: {
  187. math: true
  188. }
  189. })