123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 |
- from typing import Any, Dict, List, Optional
- import torch
- from aphrodite import _custom_ops as ops
- from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
- from aphrodite.modeling.layers.vocab_parallel_embedding import ParallelLMHead
- from aphrodite.modeling.utils import set_weight_attrs
- from aphrodite.quantization.base_config import QuantizationConfig
- def make_group_map(q_groups, num_qrows):
- gr = q_groups.tolist()
- group_map = []
- num_groups = len(gr) // 2
- for i in range(num_groups):
- bits = gr[i * 2]
- if i < num_groups - 1:
- qrows = gr[i * 2 + 3] - gr[i * 2 + 1]
- else:
- qrows = num_qrows - gr[i * 2 + 1]
- rows = qrows * 32 // bits
- for j in range(rows):
- group_map += [i]
- group_map += [rows - j]
- return torch.tensor(group_map, dtype=torch.short, device=q_groups.device)
- class Exl2Config(QuantizationConfig):
- """Config class for Exl2."""
- def __init__(self, lm_head_quantized: bool):
- self.lm_head_quantized = lm_head_quantized
- def __repr__(self) -> str:
- return f"Exl2Config(lm_head_quantized={self.lm_head_quantized})"
- @classmethod
- def get_name(cls) -> str:
- return "exl2"
- @classmethod
- def get_supported_act_dtypes(cls) -> List[torch.dtype]:
- return [torch.half]
- @classmethod
- # Need to figure it out
- def get_min_capability(cls) -> int:
- return 60
- @classmethod
- def get_config_filenames(cls) -> List[str]:
- return []
- @classmethod
- def from_config(cls, config: Dict[str, Any]) -> "Exl2Config":
- lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False)
- return cls(lm_head_quantized)
- def get_quant_method(self, layer: torch.nn.Module,
- prefix: str) -> Optional["Exl2LinearMethod"]:
- if (isinstance(layer, LinearBase) or
- (isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
- return Exl2LinearMethod(self)
- return None
- def get_scaled_act_names(self) -> List[str]:
- return []
- def merge_weight(self) -> bool:
- return False
- def quant_vocab(self) -> List[bool]:
- return [False, True]
- def support_fused_moe(self) -> bool:
- return False
- def rope_style(self) -> Optional[bool]:
- return None
- class Exl2LinearMethod(LinearMethodBase):
- """Linear method for Exl2.
- Args:
- quant_config: The Exl2 quantization config.
- """
- def __init__(self, quant_config: Exl2Config):
- self.quant_config = quant_config
- def create_weights(self, layer: torch.nn.Module,
- input_size_per_partition: int,
- output_partition_sizes: List[int], input_size: int,
- output_size: int, params_dtype: torch.dtype,
- **extra_weight_attr):
- # The shape of weight is unknown until load state dict
- # q_groups, q_invperm, q_scale, q_scale_max, q_weight, q_groups
- layer.exllama_state = 0
- # qweight = torch.nn.parameter.UninitializedParameter(
- # requires_grad=False)
- qweight = Parameter(
- torch.empty(
- input_size_per_partition // self.quant_config.pack_factor,
- output_size_per_partition,
- dtype=torch.int32,
- ),
- requires_grad=False,
- )
- set_weight_attrs(qweight, {"output_dim": 1, "ignore_warning": True})
- layer.register_parameter("q_weight", qweight)
- # qscale = torch.nn.parameter.UninitializedParameter(requires_grad=False)
- qscale = Parameter(
- torch.empty(
- input_size_per_partition // self.quant_config.pack_factor,
- output_size_per_partition,
- dtype=torch.int32,
- ),
- requires_grad=False,
- )
- set_weight_attrs(
- qscale, {
- "output_dim": 1,
- "packed_dim": 1,
- "pack_factor": 8,
- "ignore_warning": True
- })
- layer.register_parameter("q_scale", qscale)
- for name in ["q_groups", "q_invperm", "q_scale_max"]:
- fake_weight = torch.nn.parameter.UninitializedParameter(
- requires_grad=False)
- set_weight_attrs(fake_weight, {"ignore_warning": True})
- layer.register_parameter(name, fake_weight)
- def apply(self,
- layer: torch.nn.Module,
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- out_shape = x.shape[:-1] + (layer.q_weight.shape[-1], )
- reshaped_x = x.reshape(-1, x.shape[-1])
- if layer.exllama_state == 0:
- layer.q_scale_max /= 256
- layer.q_invperm = layer.q_invperm.short()
- if not hasattr(layer, 'q_perm'):
- layer.q_perm = torch.argsort(layer.q_invperm).to(torch.short)
- if not hasattr(layer, 'q_group_map'):
- layer.q_group_map = make_group_map(layer.q_groups,
- layer.q_weight.shape[0])
- layer.q_matrix = ops.make_q_matrix(
- layer.q_weight,
- layer.q_perm,
- layer.q_invperm,
- layer.q_scale,
- layer.q_scale_max,
- layer.q_groups,
- layer.q_group_map,
- )
- layer.exllama_state = 1
- output = ops.exl2_gemm(reshaped_x, layer.q_matrix)
- if bias is not None:
- output.add_(bias)
- return output.reshape(out_shape)
- def apply_moe_weights(self, w1: Dict[str,
- torch.Tensor], w2: Dict[str,
- torch.Tensor],
- x: torch.Tensor, gating_output: torch.Tensor,
- topk: int, renormalize: bool) -> torch.Tensor:
- raise NotImplementedError
|