123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- #pragma once
- #include <torch/library.h>
- #include "core/scalar_type.hpp"
- #ifndef USE_ROCM
- // AQLM
- torch::Tensor aqlm_gemm(const torch::Tensor& input, const torch::Tensor& codes,
- const torch::Tensor& codebooks,
- const torch::Tensor& scales,
- const std::vector<int64_t>& codebook_partition_sizes,
- const std::optional<torch::Tensor>& bias);
- torch::Tensor aqlm_dequant(
- const torch::Tensor& codes, const torch::Tensor& codebooks,
- const std::vector<int64_t>& codebook_partition_sizes);
- // AWQ
- torch::Tensor awq_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
- torch::Tensor _scaling_factors, torch::Tensor _zeros,
- int64_t split_k_iters);
- torch::Tensor awq_dequantize(torch::Tensor _kernel,
- torch::Tensor _scaling_factors,
- torch::Tensor _zeros, int64_t split_k_iters,
- int64_t thx, int64_t thy);
- torch::Tensor awq_group_gemm(torch::Tensor _in_feats, torch::Tensor _kernel,
- torch::Tensor _scaling_factors,
- torch::Tensor _zeros, torch::Tensor _topk_weights,
- torch::Tensor _sorted_token_ids_ptr,
- torch::Tensor _expert_ids_ptr,
- torch::Tensor _num_tokens_post_padded,
- bool mul_weights, int64_t split_k_iters);
- #endif
- // GPTQ
- torch::Tensor gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
- torch::Tensor b_gptq_qzeros,
- torch::Tensor b_gptq_scales, torch::Tensor b_g_idx,
- bool use_exllama, int64_t bit);
- void gptq_shuffle(torch::Tensor q_weight, torch::Tensor q_perm, int64_t bit);
- torch::Tensor group_gptq_gemm(torch::Tensor a, torch::Tensor b_q_weight,
- torch::Tensor b_gptq_qzeros,
- torch::Tensor b_gptq_scales,
- torch::Tensor b_g_idx, torch::Tensor topk_weights,
- torch::Tensor sorted_token_ids_ptr,
- torch::Tensor expert_ids_ptr,
- torch::Tensor num_tokens_post_padded,
- bool mul_weights, bool use_exllama);
- torch::Tensor dequant_gptq(torch::Tensor b_q_weight,
- torch::Tensor b_gptq_qzeros,
- torch::Tensor b_gptq_scales, torch::Tensor b_g_idx,
- int64_t bits, bool use_exllama);
- #ifndef USE_ROCM
- // Marlin
- torch::Tensor marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
- torch::Tensor& b_scales, torch::Tensor& workspace,
- int64_t size_m, int64_t size_n, int64_t size_k);
- torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
- torch::Tensor& b_meta,
- torch::Tensor& b_scales,
- torch::Tensor& workspace,
- aphrodite::ScalarTypeTorchPtr const& b_q_type,
- int64_t size_m, int64_t size_n,
- int64_t size_k);
- torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
- torch::Tensor& b_scales, torch::Tensor& b_zeros,
- torch::Tensor& g_idx, torch::Tensor& perm,
- torch::Tensor& workspace,
- aphrodite::ScalarTypeTorchPtr const& b_q_type,
- int64_t size_m, int64_t size_n, int64_t size_k,
- bool is_k_full, bool has_zp,
- bool use_fp32_reduce, bool is_zp_float);
- torch::Tensor gptq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm,
- int64_t size_k, int64_t size_n,
- int64_t num_bits);
- torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k,
- int64_t size_n, int64_t num_bits);
- torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
- torch::Tensor& b_scales, torch::Tensor& workspace,
- int64_t num_bits, int64_t size_m, int64_t size_n,
- int64_t size_k);
- // GGUF
- torch::Tensor ggml_dequantize(torch::Tensor W, int64_t type, int64_t m,
- int64_t n);
- torch::Tensor ggml_mul_mat_vec_a8(torch::Tensor W, torch::Tensor X,
- int64_t type, int64_t row);
- torch::Tensor ggml_mul_mat_a8(torch::Tensor W, torch::Tensor X, int64_t type,
- int64_t row);
- // QuIP#
- at::Tensor e8p_mm_origorder(const at::Tensor& A, const at::Tensor& B,
- const at::Tensor& CB);
- void decompress_e8p_origorder(torch::Tensor YIs, torch::Tensor CB,
- torch::Tensor& Y);
- #ifndef _WIN32
- bool cutlass_scaled_mm_supports_fp8(int64_t cuda_device_capability);
- void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
- torch::Tensor const& b, torch::Tensor const& a_scales,
- torch::Tensor const& b_scales,
- c10::optional<torch::Tensor> const& bias);
- void cutlass_scaled_mm_azp(torch::Tensor& out, torch::Tensor const& a,
- torch::Tensor const& b,
- torch::Tensor const& a_scales,
- torch::Tensor const& b_scales,
- torch::Tensor const& azp_adj,
- c10::optional<torch::Tensor> const& azp,
- c10::optional<torch::Tensor> const& bias);
- torch::Tensor marlin_qqq_gemm(torch::Tensor const& a,
- torch::Tensor const& b_q_weight,
- torch::Tensor const& s_tok,
- torch::Tensor const& s_ch,
- torch::Tensor const& s_group,
- torch::Tensor& workspace, int64_t size_m,
- int64_t size_n, int64_t size_k);
- #endif
- torch::Tensor fp_eXmY_linear_forward_cuda(int64_t EXPONENT, int64_t MANTISSA,
- torch::Tensor _in_feats,
- torch::Tensor _weights,
- torch::Tensor _scales,
- int64_t splitK = 1);
- #endif
- void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
- torch::Tensor const& scale);
- void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
- torch::Tensor& scales);
- // SqueezeLLM
- void squeezellm_gemm(torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
- torch::Tensor lookup_table);
- // FP8
- void static_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input,
- torch::Tensor const& scale);
- void dynamic_scaled_fp8_quant(torch::Tensor& out, torch::Tensor const& input,
- torch::Tensor& scale);
- void dynamic_per_token_scaled_fp8_quant(
- torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scale,
- c10::optional<torch::Tensor> const& scale_ub);
|