123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- from typing import Any, Dict, List, Optional, Set, Tuple, Union
- from loguru import logger
- from aphrodite.common.sequence import (ExecuteModelRequest, PoolerOutput,
- SamplerOutput)
- from aphrodite.common.utils import (get_distributed_init_method, get_ip,
- get_open_port, make_async)
- from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase
- from aphrodite.lora.request import LoRARequest
- from aphrodite.prompt_adapter.request import PromptAdapterRequest
- from aphrodite.task_handler.worker_base import WorkerWrapperBase
- def create_worker(worker_module_name, worker_class_name, **kwargs):
- wrapper = WorkerWrapperBase(
- worker_module_name=worker_module_name,
- worker_class_name=worker_class_name,
- )
- wrapper.init_worker(**kwargs)
- return wrapper.worker
- class GPUExecutor(ExecutorBase):
- uses_ray: bool = False
- def _init_executor(self) -> None:
- """Initialize the worker and load the model.
- """
- assert self.parallel_config.world_size == 1, (
- "GPUExecutor only supports single GPU.")
- self.driver_worker = self._create_worker()
- self.driver_worker.init_device()
- self.driver_worker.load_model()
- def _get_worker_kwargs(
- self,
- local_rank: int = 0,
- rank: int = 0,
- distributed_init_method: Optional[str] = None) -> Dict[str, Any]:
- """Return worker init args for a given rank."""
- if distributed_init_method is None:
- distributed_init_method = get_distributed_init_method(
- get_ip(), get_open_port())
- return dict(
- model_config=self.model_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config,
- device_config=self.device_config,
- cache_config=self.cache_config,
- load_config=self.load_config,
- local_rank=local_rank,
- rank=rank,
- distributed_init_method=distributed_init_method,
- lora_config=self.lora_config,
- speculative_config=self.speculative_config,
- prompt_adapter_config=self.prompt_adapter_config,
- is_driver_worker=(not self.parallel_config)
- or (rank % self.parallel_config.tensor_parallel_size == 0),
- )
- def _get_create_worker_kwargs(
- self,
- local_rank: int = 0,
- rank: int = 0,
- distributed_init_method: Optional[str] = None) -> Dict:
- worker_kwargs = self._get_worker_kwargs(local_rank, rank,
- distributed_init_method)
- if self.speculative_config is None:
- worker_kwargs.update(
- worker_module_name="aphrodite.task_handler.worker",
- worker_class_name="Worker")
- else:
- worker_kwargs.update(
- worker_module_name="aphrodite.spec_decode.spec_decode_worker",
- worker_class_name="create_spec_worker")
- return worker_kwargs
- def _create_worker(self,
- local_rank: int = 0,
- rank: int = 0,
- distributed_init_method: Optional[str] = None):
- return create_worker(**self._get_create_worker_kwargs(
- local_rank=local_rank,
- rank=rank,
- distributed_init_method=distributed_init_method))
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Determine the number of available KV blocks by invoking the
- underlying worker.
- """
- return self.driver_worker.determine_num_available_blocks()
- def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks) -> None:
- """Initialize the KV cache by invoking the underlying worker.
- """
- # NOTE: This is logged in the executor because there can be >1 worker
- # with other executors. We could log in the engine level, but work
- # remains to abstract away the device for non-GPU configurations.
- logger.info(f"# GPU blocks: {num_gpu_blocks}, "
- f"# CPU blocks: {num_cpu_blocks}")
- logger.info(
- f"Minimum concurrency: {num_gpu_blocks * self.cache_config.block_size / self.scheduler_config.max_model_len:.2f}x" # noqa: E501
- )
- self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
- def execute_model(
- self, execute_model_req: ExecuteModelRequest
- ) -> Optional[List[Union[SamplerOutput, PoolerOutput]]]:
- output = self.driver_worker.execute_model(execute_model_req)
- return output
- def add_lora(self, lora_request: LoRARequest) -> bool:
- assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
- return self.driver_worker.add_lora(lora_request)
- def remove_lora(self, lora_id: int) -> bool:
- assert lora_id > 0, "lora_id must be greater than 0."
- return self.driver_worker.remove_lora(lora_id)
- def list_loras(self) -> Set[int]:
- return self.driver_worker.list_loras()
- def pin_lora(self, lora_id: int) -> bool:
- assert lora_id > 0, "lora_id must be greater than 0."
- return self.driver_worker.pin_lora(lora_id)
- def add_prompt_adapter(
- self, prompt_adapter_request: PromptAdapterRequest) -> bool:
- assert prompt_adapter_request.prompt_adapter_id > 0, \
- "prompt_adapter_id must be greater than 0."
- return self.driver_worker.add_prompt_adapter(prompt_adapter_request)
- def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
- assert prompt_adapter_id > 0, \
- "prompt_adapter_id must be greater than 0."
- return self.driver_worker.remove_prompt_adapter(prompt_adapter_id)
- def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
- assert prompt_adapter_id > 0, \
- "prompt_adapter_id must be greater than 0."
- return self.driver_worker.pin_prompt_adapter(prompt_adapter_id)
- def list_prompt_adapters(self) -> Set[int]:
- return self.driver_worker.list_prompt_adapters()
- def check_health(self) -> None:
- # GPUExecutor will always be healthy as long as
- # it's running.
- return
- class GPUExecutorAsync(GPUExecutor, ExecutorAsyncBase):
- async def execute_model_async(
- self,
- execute_model_req: ExecuteModelRequest,
- ) -> List[Union[SamplerOutput, PoolerOutput]]:
- output = await make_async(self.driver_worker.execute_model
- )(execute_model_req=execute_model_req, )
- return output
|