123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859 |
- # The kernels in this file are adapted from LightLLM's context_attention_fwd:
- # https://github.com/ModelTC/lightllm/blob/main/lightllm/models/llama/triton_kernel/context_flashattention_nopad.py
- import torch
- import triton
- import triton.language as tl
- from aphrodite.platforms import current_platform
- if triton.__version__ >= "2.1.0":
- @triton.jit
- def _fwd_kernel(
- Q,
- K,
- V,
- K_cache,
- V_cache,
- B_Loc,
- sm_scale,
- k_scale,
- v_scale,
- B_Start_Loc,
- B_Seqlen,
- B_Ctxlen,
- block_size,
- x,
- Out,
- stride_b_loc_b,
- stride_b_loc_s,
- stride_qbs,
- stride_qh,
- stride_qd,
- stride_kbs,
- stride_kh,
- stride_kd,
- stride_vbs,
- stride_vh,
- stride_vd,
- stride_obs,
- stride_oh,
- stride_od,
- stride_k_cache_bs,
- stride_k_cache_h,
- stride_k_cache_d,
- stride_k_cache_bl,
- stride_k_cache_x,
- stride_v_cache_bs,
- stride_v_cache_h,
- stride_v_cache_d,
- stride_v_cache_bl,
- num_queries_per_kv: int,
- BLOCK_M: tl.constexpr,
- BLOCK_DMODEL: tl.constexpr, # head size
- BLOCK_DMODEL_PADDED: tl.constexpr, # head size padded to a power of 2
- BLOCK_N: tl.constexpr,
- SLIDING_WINDOW: tl.constexpr,
- ):
- cur_batch = tl.program_id(0)
- cur_head = tl.program_id(1)
- start_m = tl.program_id(2)
- cur_kv_head = cur_head // num_queries_per_kv
- cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch)
- cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
- cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
- cur_batch_query_len = cur_batch_seq_len - cur_batch_ctx_len
- # start position inside of the query
- # generally, N goes over kv, while M goes over query_len
- block_start_loc = BLOCK_M * start_m
- # initialize offsets
- # [N]; starts at 0
- offs_n = tl.arange(0, BLOCK_N)
- # [D]; starts at 0
- offs_d = tl.arange(0, BLOCK_DMODEL_PADDED)
- # [M]; starts at current position in query
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- # [M,D]
- off_q = (
- (cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs +
- cur_head * stride_qh + offs_d[None, :] * stride_qd)
- dim_mask = tl.where(
- tl.arange(0, BLOCK_DMODEL_PADDED) < BLOCK_DMODEL, 1,
- 0).to(tl.int1) # [D]
- q = tl.load(Q + off_q,
- mask=dim_mask[None, :] &
- (offs_m[:, None] < cur_batch_query_len),
- other=0.0) # [M,D]
- # initialize pointer to m and l
- m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") # [M]
- l_i = tl.zeros([BLOCK_M], dtype=tl.float32) # [M]
- acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_PADDED],
- dtype=tl.float32) # [M,D]
- # compute query against context (no causal mask here)
- for start_n in range(0, cur_batch_ctx_len, BLOCK_N):
- start_n = tl.multiple_of(start_n, BLOCK_N)
- # -- compute qk ----
- bn = tl.load(B_Loc + cur_batch * stride_b_loc_b +
- ((start_n + offs_n) // block_size) * stride_b_loc_s,
- mask=(start_n + offs_n) < cur_batch_ctx_len,
- other=0) # [N]
- # [D,N]
- off_k = (bn[None, :] * stride_k_cache_bs +
- cur_kv_head * stride_k_cache_h +
- (offs_d[:, None] // x) * stride_k_cache_d +
- ((start_n + offs_n[None, :]) % block_size) *
- stride_k_cache_bl +
- (offs_d[:, None] % x) * stride_k_cache_x)
- # [N,D]
- off_v = (
- bn[:, None] * stride_v_cache_bs +
- cur_kv_head * stride_v_cache_h +
- offs_d[None, :] * stride_v_cache_d +
- (start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
- k_load = tl.load(K_cache + off_k,
- mask=dim_mask[:, None] &
- ((start_n + offs_n[None, :]) < cur_batch_ctx_len),
- other=0.0) # [D,N]
- if k_load.dtype.is_fp8():
- k = (k_load.to(tl.float32) * k_scale).to(q.dtype)
- else:
- k = k_load
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) # [M,N]
- qk += tl.dot(q, k)
- qk = tl.where((start_n + offs_n[None, :]) < cur_batch_ctx_len, qk,
- float("-inf"))
- qk *= sm_scale
- if SLIDING_WINDOW > 0:
- # (cur_batch_ctx_len + offs_m[:, None]) are the positions of
- # Q entries in sequence
- # (start_n + offs_n[None, :]) are the positions of
- # KV entries in sequence
- # So the condition makes sure each entry in Q only attends
- # to KV entries not more than SLIDING_WINDOW away.
- #
- # We can't use -inf here, because the
- # sliding window may lead to the entire row being masked.
- # This then makes m_ij contain -inf, which causes NaNs in
- # exp().
- qk = tl.where((cur_batch_ctx_len + offs_m[:, None]) -
- (start_n + offs_n[None, :]) < SLIDING_WINDOW, qk,
- -10000)
- # -- compute m_ij, p, l_ij
- m_ij = tl.max(qk, 1) # [M]
- p = tl.exp(qk - m_ij[:, None]) # [M,N]
- l_ij = tl.sum(p, 1) # [M]
- # -- update m_i and l_i
- m_i_new = tl.maximum(m_i, m_ij) # [M]
- alpha = tl.exp(m_i - m_i_new) # [M]
- beta = tl.exp(m_ij - m_i_new) # [M]
- l_i_new = alpha * l_i + beta * l_ij # [M]
- # -- update output accumulator --
- # scale p
- p_scale = beta / l_i_new
- p = p * p_scale[:, None]
- # scale acc
- acc_scale = l_i / l_i_new * alpha
- acc = acc * acc_scale[:, None]
- # update acc
- v_load = tl.load(V_cache + off_v,
- mask=dim_mask[None, :] &
- ((start_n + offs_n[:, None]) < cur_batch_ctx_len),
- other=0.0) # [N,D]
- if v_load.dtype.is_fp8():
- v = (v_load.to(tl.float32) * v_scale).to(q.dtype)
- else:
- v = v_load
- p = p.to(v.dtype)
- acc += tl.dot(p, v)
- # # update m_i and l_i
- l_i = l_i_new
- m_i = m_i_new
- off_k = (offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh +
- offs_d[:, None] * stride_kd)
- off_v = (offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh +
- offs_d[None, :] * stride_vd)
- k_ptrs = K + off_k
- v_ptrs = V + off_v
- # block_mask is 0 when we're already past the current query length
- block_mask = tl.where(block_start_loc < cur_batch_query_len, 1, 0)
- # compute query against itself (with causal mask)
- for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N):
- start_n = tl.multiple_of(start_n, BLOCK_N)
- # -- compute qk ----
- k = tl.load(k_ptrs +
- (cur_batch_in_all_start_index + start_n) * stride_kbs,
- mask=dim_mask[:, None] &
- ((start_n + offs_n[None, :]) < cur_batch_query_len),
- other=0.0)
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
- qk += tl.dot(q, k)
- qk *= sm_scale
- # apply causal mask
- qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk,
- float("-inf"))
- if SLIDING_WINDOW > 0:
- qk = tl.where(
- offs_m[:, None] -
- (start_n + offs_n[None, :]) < SLIDING_WINDOW, qk, -10000)
- # -- compute m_ij, p, l_ij
- m_ij = tl.max(qk, 1)
- p = tl.exp(qk - m_ij[:, None])
- l_ij = tl.sum(p, 1)
- # -- update m_i and l_i
- m_i_new = tl.maximum(m_i, m_ij)
- alpha = tl.exp(m_i - m_i_new)
- beta = tl.exp(m_ij - m_i_new)
- l_i_new = alpha * l_i + beta * l_ij
- # -- update output accumulator --
- # scale p
- p_scale = beta / l_i_new
- p = p * p_scale[:, None]
- # scale acc
- acc_scale = l_i / l_i_new * alpha
- acc = acc * acc_scale[:, None]
- # update acc
- v = tl.load(v_ptrs +
- (cur_batch_in_all_start_index + start_n) * stride_vbs,
- mask=dim_mask[None, :] &
- ((start_n + offs_n[:, None]) < cur_batch_query_len),
- other=0.0)
- p = p.to(v.dtype)
- acc += tl.dot(p, v)
- # update m_i and l_i
- l_i = l_i_new
- m_i = m_i_new
- # initialize pointers to output
- off_o = (
- (cur_batch_in_all_start_index + offs_m[:, None]) * stride_obs +
- cur_head * stride_oh + offs_d[None, :] * stride_od)
- out_ptrs = Out + off_o
- tl.store(out_ptrs,
- acc,
- mask=dim_mask[None, :] &
- (offs_m[:, None] < cur_batch_query_len))
- return
- @triton.jit
- def _fwd_kernel_flash_attn_v2(
- Q,
- K,
- V,
- K_cache,
- V_cache,
- B_Loc,
- sm_scale,
- B_Start_Loc,
- B_Seqlen,
- B_Ctxlen,
- block_size,
- x,
- Out,
- stride_b_loc_b,
- stride_b_loc_s,
- stride_qbs,
- stride_qh,
- stride_qd,
- stride_kbs,
- stride_kh,
- stride_kd,
- stride_vbs,
- stride_vh,
- stride_vd,
- stride_obs,
- stride_oh,
- stride_od,
- stride_k_cache_bs,
- stride_k_cache_h,
- stride_k_cache_d,
- stride_k_cache_bl,
- stride_k_cache_x,
- stride_v_cache_bs,
- stride_v_cache_h,
- stride_v_cache_d,
- stride_v_cache_bl,
- num_queries_per_kv: int,
- BLOCK_M: tl.constexpr,
- BLOCK_DMODEL: tl.constexpr,
- BLOCK_N: tl.constexpr,
- ):
- cur_batch = tl.program_id(0)
- cur_head = tl.program_id(1)
- start_m = tl.program_id(2)
- cur_kv_head = cur_head // num_queries_per_kv
- cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch)
- cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
- cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
- block_start_loc = BLOCK_M * start_m
- # initialize offsets
- offs_n = tl.arange(0, BLOCK_N)
- offs_d = tl.arange(0, BLOCK_DMODEL)
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- off_q = (
- (cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs +
- cur_head * stride_qh + offs_d[None, :] * stride_qd)
- q = tl.load(
- Q + off_q,
- mask=offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len,
- other=0.0)
- # # initialize pointer to m and l
- m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
- l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
- acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
- for start_n in range(0, cur_batch_ctx_len, BLOCK_N):
- start_n = tl.multiple_of(start_n, BLOCK_N)
- # -- compute qk ----
- bn = tl.load(B_Loc + cur_batch * stride_b_loc_b +
- ((start_n + offs_n) // block_size) * stride_b_loc_s,
- mask=(start_n + offs_n) < cur_batch_ctx_len,
- other=0)
- off_k = (bn[None, :] * stride_k_cache_bs +
- cur_kv_head * stride_k_cache_h +
- (offs_d[:, None] // x) * stride_k_cache_d +
- ((start_n + offs_n[None, :]) % block_size) *
- stride_k_cache_bl +
- (offs_d[:, None] % x) * stride_k_cache_x)
- off_v = (
- bn[:, None] * stride_v_cache_bs +
- cur_kv_head * stride_v_cache_h +
- offs_d[None, :] * stride_v_cache_d +
- (start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
- k = tl.load(K_cache + off_k,
- mask=(start_n + offs_n[None, :]) < cur_batch_ctx_len,
- other=0.0)
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
- qk += tl.dot(q, k)
- qk = tl.where((start_n + offs_n[None, :]) < cur_batch_ctx_len, qk,
- float("-inf"))
- qk *= sm_scale
- # -- compute m_ij, p, l_ij
- m_ij = tl.max(qk, 1)
- m_i_new = tl.maximum(m_i, m_ij)
- p = tl.math.exp(qk - m_i_new[:, None])
- l_ij = tl.sum(p, 1)
- # -- update m_i and l_i
- alpha = tl.math.exp(m_i - m_i_new)
- l_i_new = alpha * l_i + l_ij
- # -- update output accumulator --
- # scale p
- # scale acc
- acc_scale = alpha
- # acc_scale = l_i / l_i_new * alpha
- acc = acc * acc_scale[:, None]
- # update acc
- v = tl.load(V_cache + off_v,
- mask=(start_n + offs_n[:, None]) < cur_batch_ctx_len,
- other=0.0)
- p = p.to(v.dtype)
- acc += tl.dot(p, v)
- # update m_i and l_i
- l_i = l_i_new
- m_i = m_i_new
- off_k = (offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh +
- offs_d[:, None] * stride_kd)
- off_v = (offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh +
- offs_d[None, :] * stride_vd)
- k_ptrs = K + off_k
- v_ptrs = V + off_v
- block_mask = tl.where(
- block_start_loc < cur_batch_seq_len - cur_batch_ctx_len, 1, 0)
- for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N):
- start_n = tl.multiple_of(start_n, BLOCK_N)
- # -- compute qk ----
- k = tl.load(k_ptrs +
- (cur_batch_in_all_start_index + start_n) * stride_kbs,
- mask=(start_n + offs_n[None, :]) <
- cur_batch_seq_len - cur_batch_ctx_len,
- other=0.0)
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
- qk += tl.dot(q, k)
- qk *= sm_scale
- qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk,
- float("-inf"))
- # -- compute m_ij, p, l_ij
- m_ij = tl.max(qk, 1)
- m_i_new = tl.maximum(m_i, m_ij)
- p = tl.math.exp(qk - m_i_new[:, None])
- l_ij = tl.sum(p, 1)
- # -- update m_i and l_i
- alpha = tl.math.exp(m_i - m_i_new)
- l_i_new = alpha * l_i + l_ij
- # -- update output accumulator --
- # scale p
- # scale acc
- acc_scale = alpha
- # acc_scale = l_i / l_i_new * alpha
- acc = acc * acc_scale[:, None]
- # update acc
- v = tl.load(v_ptrs +
- (cur_batch_in_all_start_index + start_n) * stride_vbs,
- mask=(start_n + offs_n[:, None]) <
- cur_batch_seq_len - cur_batch_ctx_len,
- other=0.0)
- p = p.to(v.dtype)
- acc += tl.dot(p, v)
- # update m_i and l_i
- l_i = l_i_new
- m_i = m_i_new
- # acc /= l_i[:, None]
- # initialize pointers to output
- off_o = (
- (cur_batch_in_all_start_index + offs_m[:, None]) * stride_obs +
- cur_head * stride_oh + offs_d[None, :] * stride_od)
- out_ptrs = Out + off_o
- tl.store(out_ptrs,
- acc,
- mask=offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len)
- return
- @triton.jit
- def _fwd_kernel_alibi(
- Q,
- K,
- V,
- K_cache,
- V_cache,
- B_Loc,
- sm_scale,
- k_scale,
- v_scale,
- B_Start_Loc,
- B_Seqlen,
- B_Ctxlen,
- Alibi_slopes,
- block_size,
- x,
- Out,
- stride_b_loc_b,
- stride_b_loc_s,
- stride_qbs,
- stride_qh,
- stride_qd,
- stride_kbs,
- stride_kh,
- stride_kd,
- stride_vbs,
- stride_vh,
- stride_vd,
- stride_obs,
- stride_oh,
- stride_od,
- stride_k_cache_bs,
- stride_k_cache_h,
- stride_k_cache_d,
- stride_k_cache_bl,
- stride_k_cache_x,
- stride_v_cache_bs,
- stride_v_cache_h,
- stride_v_cache_d,
- stride_v_cache_bl,
- num_queries_per_kv: int,
- BLOCK_M: tl.constexpr,
- BLOCK_DMODEL: tl.constexpr, # head size
- BLOCK_DMODEL_PADDED: tl.constexpr, # head size padded to a power of 2
- BLOCK_N: tl.constexpr,
- ):
- # attn_bias[]
- cur_batch = tl.program_id(0)
- cur_head = tl.program_id(1)
- start_m = tl.program_id(2)
- cur_kv_head = cur_head // num_queries_per_kv
- # cur_batch_seq_len: the length of prompts
- # cur_batch_ctx_len: the length of prefix
- # cur_batch_in_all_start_index: the start id of the dim=0
- cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch)
- cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
- cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
- block_start_loc = BLOCK_M * start_m
- # initialize offsets
- offs_n = tl.arange(0, BLOCK_N)
- offs_d = tl.arange(0, BLOCK_DMODEL_PADDED)
- offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- off_q = (
- (cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs +
- cur_head * stride_qh + offs_d[None, :] * stride_qd)
- dim_mask = tl.where(
- tl.arange(0, BLOCK_DMODEL_PADDED) < BLOCK_DMODEL, 1, 0).to(tl.int1)
- q = tl.load(Q + off_q,
- mask=dim_mask[None, :] &
- (offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len),
- other=0.0)
- # # initialize pointer to m and l
- m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
- l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
- acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_PADDED], dtype=tl.float32)
- alibi_slope = tl.load(Alibi_slopes + cur_head)
- alibi_start_q = tl.arange(
- 0, BLOCK_M) + block_start_loc + cur_batch_ctx_len
- alibi_start_k = 0
- for start_n in range(0, cur_batch_ctx_len, BLOCK_N):
- start_n = tl.multiple_of(start_n, BLOCK_N)
- # -- compute qk ----
- bn = tl.load(B_Loc + cur_batch * stride_b_loc_b +
- ((start_n + offs_n) // block_size) * stride_b_loc_s,
- mask=(start_n + offs_n) < cur_batch_ctx_len,
- other=0)
- off_k = (bn[None, :] * stride_k_cache_bs +
- cur_kv_head * stride_k_cache_h +
- (offs_d[:, None] // x) * stride_k_cache_d +
- ((start_n + offs_n[None, :]) % block_size) *
- stride_k_cache_bl +
- (offs_d[:, None] % x) * stride_k_cache_x)
- off_v = (
- bn[:, None] * stride_v_cache_bs +
- cur_kv_head * stride_v_cache_h +
- offs_d[None, :] * stride_v_cache_d +
- (start_n + offs_n[:, None]) % block_size * stride_v_cache_bl)
- k_load = tl.load(K_cache + off_k,
- mask=dim_mask[:, None] &
- ((start_n + offs_n[None, :]) < cur_batch_ctx_len),
- other=0.0) # [D,N]
- if k_load.dtype.is_fp8():
- k = (k_load.to(tl.float32) * k_scale).to(q.dtype)
- else:
- k = k_load
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
- qk += tl.dot(q, k)
- qk = tl.where((start_n + offs_n[None, :]) < cur_batch_ctx_len, qk,
- float("-inf"))
- qk *= sm_scale
- # load alibi
- alibi = (tl.arange(0, BLOCK_N)[None, :] + alibi_start_k -
- alibi_start_q[:, None]) * alibi_slope
- alibi = tl.where(
- (alibi <= 0) & (alibi_start_q[:, None] < cur_batch_seq_len),
- alibi, float("-inf"))
- qk += alibi
- alibi_start_k += BLOCK_N
- # -- compute m_ij, p, l_ij
- m_ij = tl.max(qk, 1)
- m_i_new = tl.maximum(m_i, m_ij)
- p = tl.math.exp(qk - m_i_new[:, None])
- l_ij = tl.sum(p, 1)
- # -- update m_i and l_i
- alpha = tl.math.exp(m_i - m_i_new)
- l_i_new = alpha * l_i + l_ij
- # -- update output accumulator --
- # scale p
- # scale acc
- acc_scale = alpha
- # acc_scale = l_i / l_i_new * alpha
- acc = acc * acc_scale[:, None]
- # update acc
- v_load = tl.load(V_cache + off_v,
- mask=dim_mask[None, :] &
- ((start_n + offs_n[:, None]) < cur_batch_ctx_len),
- other=0.0)
- if v_load.dtype.is_fp8():
- v = (v_load.to(tl.float32) * v_scale).to(q.dtype)
- else:
- v = v_load
- p = p.to(v.dtype)
- acc += tl.dot(p, v, allow_tf32=False)
- # update m_i and l_i
- l_i = l_i_new
- m_i = m_i_new
- off_k = (offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh +
- offs_d[:, None] * stride_kd)
- off_v = (offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh +
- offs_d[None, :] * stride_vd)
- k_ptrs = K + off_k
- v_ptrs = V + off_v
- block_mask = tl.where(
- block_start_loc < cur_batch_seq_len - cur_batch_ctx_len, 1, 0)
- # init alibi
- alibi_slope = tl.load(Alibi_slopes + cur_head)
- alibi_start_q = tl.arange(
- 0, BLOCK_M) + block_start_loc + cur_batch_ctx_len
- alibi_start_k = cur_batch_ctx_len
- # # init debugger
- # offset_db_q = tl.arange(0, BLOCK_M) + block_start_loc
- # offset_db_k = tl.arange(0, BLOCK_N)
- # calc q[BLOCK_M, BLOCK_MODEL] mul k[prefix_len: , BLOCK_DMODEL]
- for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N):
- start_n = tl.multiple_of(start_n, BLOCK_N)
- # -- compute qk ----
- k = tl.load(k_ptrs +
- (cur_batch_in_all_start_index + start_n) * stride_kbs,
- mask=dim_mask[:, None] &
- ((start_n + offs_n[None, :]) <
- cur_batch_seq_len - cur_batch_ctx_len),
- other=0.0)
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
- qk += tl.dot(q, k, allow_tf32=False)
- qk *= sm_scale
- qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk,
- float("-inf"))
- # load alibi
- alibi = (tl.arange(0, BLOCK_N)[None, :] + alibi_start_k -
- alibi_start_q[:, None]) * alibi_slope
- alibi = tl.where(
- (alibi <= 0) & (alibi_start_q[:, None] < cur_batch_seq_len),
- alibi, float("-inf"))
- qk += alibi
- alibi_start_k += BLOCK_N
- # -- compute m_ij, p, l_ij
- m_ij = tl.max(qk, 1)
- m_i_new = tl.maximum(m_i, m_ij)
- p = tl.math.exp(qk - m_i_new[:, None])
- l_ij = tl.sum(p, 1)
- # -- update m_i and l_i
- alpha = tl.math.exp(m_i - m_i_new)
- l_i_new = alpha * l_i + l_ij
- # -- update output accumulator --
- # scale p
- # scale acc
- acc_scale = alpha
- # acc_scale = l_i / l_i_new * alpha
- acc = acc * acc_scale[:, None]
- # update acc
- v = tl.load(v_ptrs +
- (cur_batch_in_all_start_index + start_n) * stride_vbs,
- mask=dim_mask[None, :] &
- ((start_n + offs_n[:, None]) <
- cur_batch_seq_len - cur_batch_ctx_len),
- other=0.0)
- p = p.to(v.dtype)
- acc += tl.dot(p, v, allow_tf32=False)
- # update m_i and l_i
- l_i = l_i_new
- m_i = m_i_new
- acc = acc / l_i[:, None]
- # initialize pointers to output
- off_o = (
- (cur_batch_in_all_start_index + offs_m[:, None]) * stride_obs +
- cur_head * stride_oh + offs_d[None, :] * stride_od)
- out_ptrs = Out + off_o
- tl.store(out_ptrs,
- acc,
- mask=dim_mask[None, :] &
- (offs_m[:, None] < cur_batch_seq_len - cur_batch_ctx_len))
- return
- @torch.inference_mode()
- def context_attention_fwd(q,
- k,
- v,
- o,
- kv_cache_dtype: str,
- k_cache,
- v_cache,
- b_loc,
- b_start_loc,
- b_seq_len,
- b_ctx_len,
- max_input_len,
- k_scale: float = 1.0,
- v_scale: float = 1.0,
- alibi_slopes=None,
- sliding_window=None):
- cap = current_platform.get_device_capability()
- BLOCK = 128 if cap[0] >= 8 else 64
- NUM_WARPS = 8
- if q.dtype is torch.float32:
- BLOCK = BLOCK // 2
- # Conversion of FP8 Tensor from uint8 storage to
- # appropriate torch.dtype for interpretation by Triton
- if "fp8" in kv_cache_dtype:
- assert (k_cache.dtype == torch.uint8)
- assert (v_cache.dtype == torch.uint8)
- if kv_cache_dtype in ("fp8", "fp8_e4m3"):
- target_dtype = torch.float8_e4m3fn
- elif kv_cache_dtype == "fp8_e5m2":
- target_dtype = torch.float8_e5m2
- else:
- raise ValueError("Unsupported FP8 dtype:", kv_cache_dtype)
- k_cache = k_cache.view(target_dtype)
- v_cache = v_cache.view(target_dtype)
- if (k_cache.dtype == torch.uint8
- or v_cache.dtype == torch.uint8 and kv_cache_dtype == "auto"):
- raise ValueError("kv_cache_dtype='auto' unsupported for\
- FP8 KV Cache prefill kernel")
- # shape constraints
- Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
- assert Lq == Lk and Lk == Lv
- # round up Lk to a power of 2 - this is required for Triton block size
- Lk_padded = triton.next_power_of_2(Lk)
- sm_scale = 1.0 / (Lq**0.5)
- batch, head = b_seq_len.shape[0], q.shape[1]
- num_queries_per_kv = q.shape[1] // k.shape[1]
- grid = (batch, head, triton.cdiv(max_input_len, BLOCK)) # batch, head,
- # 0 means "disable"
- if sliding_window is None or sliding_window <= 0:
- sliding_window = 0
- if alibi_slopes is not None:
- _fwd_kernel_alibi[grid](
- q,
- k,
- v,
- k_cache,
- v_cache,
- b_loc,
- sm_scale,
- k_scale,
- v_scale,
- b_start_loc,
- b_seq_len,
- b_ctx_len,
- alibi_slopes,
- v_cache.shape[3],
- k_cache.shape[4],
- o,
- b_loc.stride(0),
- b_loc.stride(1),
- q.stride(0),
- q.stride(1),
- q.stride(2),
- k.stride(0),
- k.stride(1),
- k.stride(2),
- v.stride(0),
- v.stride(1),
- v.stride(2),
- o.stride(0),
- o.stride(1),
- o.stride(2),
- k_cache.stride(0),
- k_cache.stride(1),
- k_cache.stride(2),
- k_cache.stride(3),
- k_cache.stride(
- 4
- ), #[num_blocks, num_kv_heads, head_size/x, block_size, x]
- v_cache.stride(0),
- v_cache.stride(1),
- v_cache.stride(2),
- v_cache.stride(
- 3), #[num_blocks, num_kv_heads, head_size, block_size]
- num_queries_per_kv=num_queries_per_kv,
- BLOCK_M=BLOCK,
- BLOCK_DMODEL=Lk,
- BLOCK_DMODEL_PADDED=Lk_padded,
- BLOCK_N=BLOCK,
- num_warps=NUM_WARPS,
- num_stages=1,
- )
- return
- _fwd_kernel[grid](
- q,
- k,
- v,
- k_cache,
- v_cache,
- b_loc,
- sm_scale,
- k_scale,
- v_scale,
- b_start_loc,
- b_seq_len,
- b_ctx_len,
- v_cache.shape[3],
- k_cache.shape[4],
- o,
- b_loc.stride(0),
- b_loc.stride(1),
- q.stride(0),
- q.stride(1),
- q.stride(2),
- k.stride(0),
- k.stride(1),
- k.stride(2),
- v.stride(0),
- v.stride(1),
- v.stride(2),
- o.stride(0),
- o.stride(1),
- o.stride(2),
- k_cache.stride(0),
- k_cache.stride(1),
- k_cache.stride(2),
- k_cache.stride(3),
- k_cache.stride(
- 4), #[num_blocks, num_kv_heads, head_size/x, block_size, x]
- v_cache.stride(0),
- v_cache.stride(1),
- v_cache.stride(2),
- v_cache.stride(
- 3), #[num_blocks, num_kv_heads, head_size, block_size]
- num_queries_per_kv=num_queries_per_kv,
- BLOCK_M=BLOCK,
- BLOCK_DMODEL=Lk,
- BLOCK_DMODEL_PADDED=Lk_padded,
- BLOCK_N=BLOCK,
- SLIDING_WINDOW=sliding_window,
- num_warps=NUM_WARPS,
- num_stages=1,
- )
- return
|