123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719 |
- """Attention layer with FlashAttention."""
- from dataclasses import dataclass
- from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type
- import torch
- from aphrodite import _custom_ops as ops
- from aphrodite.attention.backends.abstract import (AttentionBackend,
- AttentionImpl,
- AttentionMetadata,
- AttentionMetadataBuilder,
- AttentionType)
- from aphrodite.attention.backends.utils import (PAD_SLOT_ID,
- compute_slot_mapping,
- compute_slot_mapping_start_idx,
- is_block_tables_empty)
- from aphrodite.common.utils import async_tensor_h2d, make_tensor_with_pad
- if TYPE_CHECKING:
- from aphrodite.task_handler.model_runner import ModelInputForGPUBuilder
- from aphrodite_flash_attn import (
- flash_attn_varlen_func as _flash_attn_varlen_func)
- from aphrodite_flash_attn import (
- flash_attn_with_kvcache as _flash_attn_with_kvcache)
- @torch.library.custom_op("aphrodite::flash_attn_varlen_func", mutates_args=[])
- def flash_attn_varlen_func(
- q: torch.Tensor,
- k: torch.Tensor,
- v: torch.Tensor,
- cu_seqlens_q: torch.Tensor,
- cu_seqlens_k: torch.Tensor,
- max_seqlen_q: int,
- max_seqlen_k: int,
- softmax_scale: Optional[float] = None,
- causal: bool = False,
- window_size: Optional[List[int]] = None,
- softcap: float = 0.0,
- alibi_slopes: Optional[torch.Tensor] = None,
- block_table: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- # custom op does not support tuple input
- real_window_size: Tuple[int, int]
- if window_size is None:
- real_window_size = (-1, -1)
- else:
- assert len(window_size) == 2
- real_window_size = (window_size[0], window_size[1])
- return _flash_attn_varlen_func(
- q=q,
- k=k,
- v=v,
- cu_seqlens_q=cu_seqlens_q,
- cu_seqlens_k=cu_seqlens_k,
- max_seqlen_q=max_seqlen_q,
- max_seqlen_k=max_seqlen_k,
- softmax_scale=softmax_scale,
- causal=causal,
- window_size=real_window_size,
- softcap=softcap,
- alibi_slopes=alibi_slopes,
- block_table=block_table,
- )
- @flash_attn_varlen_func.register_fake # type: ignore
- def _(
- q: torch.Tensor,
- k: torch.Tensor,
- v: torch.Tensor,
- cu_seqlens_q: torch.Tensor,
- cu_seqlens_k: torch.Tensor,
- max_seqlen_q: int,
- max_seqlen_k: int,
- softmax_scale: Optional[float] = None,
- causal: bool = False,
- window_size: Optional[List[int]] = None,
- softcap: float = 0.0,
- alibi_slopes: Optional[torch.Tensor] = None,
- block_table: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- return torch.empty_like(q)
- @torch.library.custom_op("aphrodite::flash_attn_with_kvcache", mutates_args=[])
- def flash_attn_with_kvcache(
- decode_query: torch.Tensor,
- key_cache: torch.Tensor,
- value_cache: torch.Tensor,
- cache_seqlens: Optional[torch.Tensor] = None,
- block_table: Optional[torch.Tensor] = None,
- softmax_scale: Optional[float] = None,
- causal: bool = False,
- alibi_slopes: Optional[torch.Tensor] = None,
- softcap: float = 0.0,
- ) -> torch.Tensor:
- return _flash_attn_with_kvcache(
- decode_query,
- key_cache,
- value_cache,
- cache_seqlens=cache_seqlens,
- block_table=block_table,
- softmax_scale=softmax_scale,
- causal=causal,
- alibi_slopes=alibi_slopes,
- softcap=softcap,
- )
- @flash_attn_with_kvcache.register_fake # type: ignore
- def _(
- decode_query: torch.Tensor,
- key_cache: torch.Tensor,
- value_cache: torch.Tensor,
- cache_seqlens: Optional[torch.Tensor] = None,
- block_table: Optional[torch.Tensor] = None,
- softmax_scale: Optional[float] = None,
- causal: bool = False,
- alibi_slopes: Optional[torch.Tensor] = None,
- softcap: float = 0.0,
- ) -> torch.Tensor:
- return torch.empty_like(decode_query)
- class FlashAttentionBackend(AttentionBackend):
- @staticmethod
- def get_supported_head_sizes() -> List[int]:
- return [32, 64, 96, 128, 160, 192, 224, 256]
- @staticmethod
- def get_name() -> str:
- return "flash-attn"
- @staticmethod
- def get_impl_cls() -> Type["FlashAttentionImpl"]:
- return FlashAttentionImpl
- @staticmethod
- def get_metadata_cls() -> Type["AttentionMetadata"]:
- return FlashAttentionMetadata
- @staticmethod
- def get_builder_cls() -> Type["FlashAttentionMetadataBuilder"]:
- return FlashAttentionMetadataBuilder
- @staticmethod
- def get_kv_cache_shape(
- num_blocks: int,
- block_size: int,
- num_kv_heads: int,
- head_size: int,
- ) -> Tuple[int, ...]:
- if block_size % 16 != 0:
- raise ValueError("Block size must be a multiple of 16.")
- return (2, num_blocks, block_size, num_kv_heads, head_size)
- @staticmethod
- def swap_blocks(
- src_kv_cache: torch.Tensor,
- dst_kv_cache: torch.Tensor,
- src_to_dst: torch.Tensor,
- ) -> None:
- src_key_cache = src_kv_cache[0]
- dst_key_cache = dst_kv_cache[0]
- ops.swap_blocks(src_key_cache, dst_key_cache, src_to_dst)
- src_value_cache = src_kv_cache[1]
- dst_value_cache = dst_kv_cache[1]
- ops.swap_blocks(src_value_cache, dst_value_cache, src_to_dst)
- @staticmethod
- def copy_blocks(
- kv_caches: List[torch.Tensor],
- src_to_dists: torch.Tensor,
- ) -> None:
- key_caches = [kv_cache[0] for kv_cache in kv_caches]
- value_caches = [kv_cache[1] for kv_cache in kv_caches]
- ops.copy_blocks(key_caches, value_caches, src_to_dists)
- @dataclass
- class FlashAttentionMetadata(AttentionMetadata):
- """Metadata for FlashAttentionBackend.
- NOTE: Any python object stored here is not updated when it is
- cuda-graph replayed. If you have values that need to be changed
- dynamically, it should be stored in tensor. The tensor has to be
- updated from `CUDAGraphRunner.forward` API.
- """
- # (batch_size,). The sequence length per sequence. Sequence length means
- # the computed tokens + new tokens None if it is a decoding.
- seq_lens: Optional[List[int]]
- # seq_lens stored as a tensor.
- seq_lens_tensor: Optional[torch.Tensor]
- # NOTE: Definition of context_len, query_len, and seq_len.
- # |---------- N-1 iteration --------|
- # |---------------- N iteration ---------------------|
- # |- tokenA -|......................|-- newTokens ---|
- # |---------- context_len ----------|
- # |-------------------- seq_len ----------------------|
- # |-- query_len ---|
- # Maximum query length in the batch. None for decoding.
- max_query_len: Optional[int]
- # Maximum sequence length among prefill batch. 0 if there are decoding
- # requests only.
- max_prefill_seq_len: int
- # Maximum sequence length among decode batch. 0 if there are prefill
- # requests only.
- max_decode_seq_len: int
- # (batch_size + 1,). The cumulative subquery lengths of the sequences in
- # the batch, used to index into subquery. E.g., if the subquery length
- # is [4, 6], it is [0, 4, 10].
- query_start_loc: Optional[torch.Tensor]
- # (batch_size + 1,). The cumulative sequence lengths of the sequences in
- # the batch, used to index into sequence. E.g., if the sequence length is
- # [4, 6], it is [0, 4, 10].
- seq_start_loc: Optional[torch.Tensor]
- # (batch_size,) A tensor of context lengths (tokens that are computed
- # so far).
- context_lens_tensor: Optional[torch.Tensor]
- # (batch_size, max_blocks_per_seq).
- # Block addresses per sequence. (Seq id -> list of physical block)
- # E.g., [0, 1, 2] means tokens are stored in 0th, 1st, and 2nd blocks
- # in the kv cache. Each block can contain up to block_size tokens.
- # 2nd dimensions are padded up to max_blocks_per_seq if it is cuda-graph
- # captured.
- block_tables: Optional[torch.Tensor]
- # Whether or not if cuda graph is enabled.
- # Cuda-graph is currently enabled for decoding only.
- # TODO: Move `use_cuda_graph` out since it's unrelated to attention.
- use_cuda_graph: bool
- _cached_prefill_metadata: Optional["FlashAttentionMetadata"] = None
- _cached_decode_metadata: Optional["FlashAttentionMetadata"] = None
- @property
- def prefill_metadata(self) -> Optional["FlashAttentionMetadata"]:
- if self.num_prefills == 0:
- return None
- if self._cached_prefill_metadata is not None:
- return self._cached_prefill_metadata
- assert self.seq_lens is not None
- assert self.seq_lens_tensor is not None
- assert self.query_start_loc is not None
- assert self.context_lens_tensor is not None
- assert self.block_tables is not None
- assert self.seq_start_loc is not None
- self._cached_prefill_metadata = FlashAttentionMetadata(
- num_prefills=self.num_prefills,
- num_prefill_tokens=self.num_prefill_tokens,
- num_decode_tokens=0,
- slot_mapping=self.slot_mapping[:self.num_prefill_tokens],
- seq_lens=self.seq_lens[:self.num_prefills],
- seq_lens_tensor=self.seq_lens_tensor[:self.num_prefills],
- max_query_len=self.max_query_len,
- max_prefill_seq_len=self.max_prefill_seq_len,
- max_decode_seq_len=0,
- query_start_loc=self.query_start_loc[:self.num_prefills + 1],
- seq_start_loc=self.seq_start_loc[:self.num_prefills + 1],
- context_lens_tensor=self.context_lens_tensor[:self.num_prefills],
- block_tables=self.block_tables[:self.num_prefills],
- use_cuda_graph=False,
- )
- return self._cached_prefill_metadata
- @property
- def decode_metadata(self) -> Optional["FlashAttentionMetadata"]:
- if self.num_decode_tokens == 0:
- return None
- if self._cached_decode_metadata is not None:
- return self._cached_decode_metadata
- assert self.block_tables is not None
- assert self.seq_lens_tensor is not None
- self._cached_decode_metadata = FlashAttentionMetadata(
- num_prefills=0,
- num_prefill_tokens=0,
- num_decode_tokens=self.num_decode_tokens,
- slot_mapping=self.slot_mapping[self.num_prefill_tokens:],
- seq_lens=None,
- seq_lens_tensor=self.seq_lens_tensor[self.num_prefills:],
- max_query_len=None,
- max_prefill_seq_len=0,
- max_decode_seq_len=self.max_decode_seq_len,
- query_start_loc=None,
- seq_start_loc=None,
- context_lens_tensor=None,
- block_tables=self.block_tables[self.num_prefills:],
- use_cuda_graph=self.use_cuda_graph,
- )
- return self._cached_decode_metadata
- def advance_step(self, num_seqs: int, num_queries: int):
- """
- Update metadata in-place to advance one decode step.
- """
- # GPU in-place update is currently called separately through
- # custom_ops.advance_step(). See draft_model_runner.
- # TODO: Move this logic to the backend.
- # When using cudagraph, the num_seqs is padded to the next captured
- # batch sized, but num_queries tracks the actual number of requests in
- # the batch. For --enforce-eager mode, num_seqs == num_queries
- if num_seqs != num_queries:
- assert num_seqs > num_queries
- assert self.use_cuda_graph
- assert self.num_prefills == 0
- assert self.num_prefill_tokens == 0
- assert self.num_decode_tokens == num_seqs
- assert self.slot_mapping.shape == (num_seqs, )
- assert self.seq_lens is not None
- assert len(self.seq_lens) == num_seqs
- assert self.seq_lens_tensor is not None
- assert self.seq_lens_tensor.shape == (num_seqs, )
- assert self.max_query_len == 1
- assert self.max_prefill_seq_len == 0
- assert self.max_decode_seq_len == max(self.seq_lens)
- assert self.query_start_loc is not None
- assert self.query_start_loc.shape == (num_queries + 1, )
- assert self.seq_start_loc is not None
- assert self.seq_start_loc.shape == (num_seqs + 1, )
- assert self.context_lens_tensor is not None
- assert self.context_lens_tensor.shape == (num_queries, )
- assert self.block_tables is not None
- assert self.block_tables.shape[0] == num_seqs
- # Update query lengths. Note that we update only queries and not seqs,
- # since tensors may be padded due to captured cuda graph batch size
- for i in range(num_queries):
- self.seq_lens[i] += 1
- self.max_decode_seq_len = max(self.seq_lens)
- class FlashAttentionMetadataBuilder(
- AttentionMetadataBuilder[FlashAttentionMetadata]):
- def __init__(self, input_builder: "ModelInputForGPUBuilder"):
- self.slot_mapping: List[int] = []
- self.prefill_seq_lens: List[int] = []
- self.context_lens: List[int] = []
- self.block_tables: List[List[int]] = []
- self.curr_seq_lens: List[int] = []
- self.num_prefills = 0
- self.num_prefill_tokens = 0
- self.num_decode_tokens = 0
- self.has_prefix_cache_hit = False
- self.input_builder = input_builder
- self.runner = input_builder.runner
- self.sliding_window = input_builder.sliding_window
- self.block_size = input_builder.block_size
- self.use_v2_block_manager = (
- input_builder.scheduler_config.use_v2_block_manager)
- def _add_seq_group(
- self, inter_data: "ModelInputForGPUBuilder.InterDataForSeqGroup",
- chunked_prefill_enabled: bool, prefix_cache_hit: bool):
- """Add a sequence group to the metadata. Specifically update/append
- 1. context length.
- 2. block table.
- 3. slot mapping.
- """
- is_prompt = inter_data.is_prompt
- block_tables = inter_data.block_tables
- for (seq_id, token_len, seq_len, curr_seq_len, query_len, context_len,
- curr_sliding_window_block) in zip(
- inter_data.seq_ids, [len(t) for t in inter_data.input_tokens],
- inter_data.orig_seq_lens, inter_data.seq_lens,
- inter_data.query_lens, inter_data.context_lens,
- inter_data.curr_sliding_window_blocks):
- self.context_lens.append(context_len)
- if is_prompt:
- self.num_prefills += 1
- self.num_prefill_tokens += token_len
- self.prefill_seq_lens.append(seq_len)
- else:
- assert query_len == 1, (
- "seq_len: {}, context_len: {}, query_len: {}".format(
- seq_len, context_len, query_len))
- self.num_decode_tokens += query_len
- self.curr_seq_lens.append(curr_seq_len)
- # Compute block table.
- # TODO: Combine chunked prefill and prefix caching by
- # only allowing multiple of block_size chunk size.
- # NOTE: This only works for oooooooxxx style attention.
- block_table = []
- if prefix_cache_hit:
- # NOTE: For flash-attn, the block table should
- # include the entries for the incoming prefill tokens.
- block_table = block_tables[seq_id]
- elif ((chunked_prefill_enabled or not is_prompt)
- and block_tables is not None):
- if curr_sliding_window_block == 0:
- block_table = block_tables[seq_id]
- else:
- block_table = block_tables[seq_id][
- -curr_sliding_window_block:]
- self.block_tables.append(block_table)
- # Compute slot mapping.
- is_profile_run = is_block_tables_empty(block_tables)
- start_idx = compute_slot_mapping_start_idx(
- is_prompt, query_len, context_len, self.sliding_window,
- self.use_v2_block_manager)
- compute_slot_mapping(is_profile_run, self.slot_mapping, seq_id,
- seq_len, context_len, start_idx,
- self.block_size, inter_data.block_tables)
- def build(self, seq_lens: List[int], query_lens: List[int],
- cuda_graph_pad_size: int, batch_size: int):
- """Build attention metadata with on-device tensors.
- Args:
- seq_lens: The maybe padded sequence lengths of the input sequences.
- query_lens: The query lengths of the input sequences.
- cuda_graph_pad_size: The padding size for cuda graph.
- -1 if cuda graph is not used.
- batch_size: The maybe padded batch size.
- """
- prefix_cache_hit = any([
- inter_data.prefix_cache_hit
- for inter_data in self.input_builder.inter_data_list
- ])
- for inter_data in self.input_builder.inter_data_list:
- self._add_seq_group(inter_data,
- self.input_builder.chunked_prefill_enabled,
- prefix_cache_hit)
- device = self.runner.device
- use_captured_graph = cuda_graph_pad_size != -1
- max_query_len = max(query_lens)
- max_prefill_seq_len = max(self.prefill_seq_lens, default=0)
- max_decode_seq_len = max(self.curr_seq_lens, default=0)
- num_decode_tokens = self.num_decode_tokens
- if use_captured_graph:
- self.slot_mapping.extend([PAD_SLOT_ID] * cuda_graph_pad_size)
- self.block_tables.extend([] * cuda_graph_pad_size)
- num_decode_tokens = batch_size
- # The shape of graph_block_tables is
- # [max batch size, max context len // block size].
- input_block_tables = self.runner.graph_block_tables[:batch_size]
- for i, block_table in enumerate(self.block_tables):
- if block_table:
- input_block_tables[i, :len(block_table)] = block_table
- block_tables = torch.from_numpy(input_block_tables).to(
- device=device, non_blocking=True)
- else:
- block_tables = make_tensor_with_pad(
- self.block_tables,
- pad=0,
- dtype=torch.int,
- device=device,
- )
- assert max_query_len > 0, ("query_lens: {}".format(query_lens))
- assert device is not None
- context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
- device, self.runner.pin_memory)
- seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
- self.runner.pin_memory)
- query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
- self.runner.pin_memory)
- slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
- device, self.runner.pin_memory)
- query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
- dtype=torch.int32,
- device=device)
- seq_start_loc = torch.zeros(seq_lens_tensor.shape[0] + 1,
- dtype=torch.int32,
- device=device)
- torch.cumsum(seq_lens_tensor,
- dim=0,
- dtype=seq_start_loc.dtype,
- out=seq_start_loc[1:])
- torch.cumsum(query_lens_tensor,
- dim=0,
- dtype=query_start_loc.dtype,
- out=query_start_loc[1:])
- return FlashAttentionMetadata(
- num_prefills=self.num_prefills,
- slot_mapping=slot_mapping_tensor,
- num_prefill_tokens=self.num_prefill_tokens,
- num_decode_tokens=num_decode_tokens,
- seq_lens=seq_lens,
- seq_lens_tensor=seq_lens_tensor,
- max_query_len=max_query_len,
- max_prefill_seq_len=max_prefill_seq_len,
- max_decode_seq_len=max_decode_seq_len,
- query_start_loc=query_start_loc,
- seq_start_loc=seq_start_loc,
- context_lens_tensor=context_lens_tensor,
- block_tables=block_tables,
- use_cuda_graph=use_captured_graph,
- )
- class FlashAttentionImpl(AttentionImpl):
- """
- If the input tensors contain prompt tokens, the layout is as follows:
- |<--------------- num_prefill_tokens ----------------->|
- |<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
- Otherwise, the layout is as follows:
- |<----------------- num_decode_tokens ------------------>|
- |<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
- Generation tokens can contain padding when cuda-graph is used.
- Currently, prompt tokens don't contain any padding.
- The prompts might have different lengths, while the generation tokens
- always have length 1.
- If chunked prefill is enabled, prefill tokens and decode tokens can be
- batched together in a flattened 1D query.
- |<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
- |<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
- Currently, cuda graph is disabled for chunked prefill, meaning there's no
- padding between prefill and decode tokens.
- """
- def __init__(
- self,
- num_heads: int,
- head_size: int,
- scale: float,
- num_kv_heads: int,
- alibi_slopes: Optional[List[float]],
- sliding_window: Optional[int],
- kv_cache_dtype: str,
- blocksparse_params: Optional[Dict[str, Any]] = None,
- logits_soft_cap: Optional[float] = None,
- ) -> None:
- if blocksparse_params is not None:
- raise ValueError(
- "FlashAttention does not support block-sparse attention.")
- self.num_heads = num_heads
- self.head_size = head_size
- self.scale = float(scale)
- self.num_kv_heads = num_kv_heads
- if alibi_slopes is not None:
- alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
- self.alibi_slopes = alibi_slopes
- self.sliding_window = ((sliding_window, sliding_window)
- if sliding_window is not None else (-1, -1))
- self.kv_cache_dtype = kv_cache_dtype
- if logits_soft_cap is None:
- # In flash-attn, setting logits_soft_cap as 0 means no soft cap.
- logits_soft_cap = 0
- self.logits_soft_cap = logits_soft_cap
- assert self.num_heads % self.num_kv_heads == 0
- self.num_queries_per_kv = self.num_heads // self.num_kv_heads
- if sliding_window is not None:
- # NOTE: flash-attn's sliding window does not work with
- # paged KV cache.
- raise ValueError(
- "Sliding window is not supported in FlashAttention.")
- support_head_sizes = FlashAttentionBackend.get_supported_head_sizes()
- if head_size not in support_head_sizes:
- raise ValueError(
- f"Head size {head_size} is not supported by FlashAttention. "
- f"Supported head sizes are: {support_head_sizes}.")
- def forward(
- self,
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: FlashAttentionMetadata,
- k_scale: float = 1.0,
- v_scale: float = 1.0,
- attn_type: AttentionType = AttentionType.DECODER,
- ) -> torch.Tensor:
- """Forward pass with FlashAttention.
- Args:
- query: shape = [num_tokens, num_heads * head_size]
- key: shape = [num_tokens, num_kv_heads * head_size]
- value: shape = [num_tokens, num_kv_heads * head_size]
- kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
- attn_metadata: Metadata for attention.
- Returns:
- shape = [num_tokens, num_heads * head_size]
- """
- if attn_type != AttentionType.DECODER:
- raise NotImplementedError("Encoder self-attention and "
- "encoder/decoder cross-attention "
- "are not implemented for "
- "FlashAttentionImpl")
- # NOTE: FlashAttention does not support FP8 KV cache.
- assert k_scale == 1.0 and v_scale == 1.0, (
- "key/v_scale is not supported in FlashAttention.")
- num_tokens, hidden_size = query.shape
- # Reshape the query, key, and value tensors.
- query = query.view(-1, self.num_heads, self.head_size)
- key = key.view(-1, self.num_kv_heads, self.head_size)
- value = value.view(-1, self.num_kv_heads, self.head_size)
- if kv_cache is not None:
- key_cache = kv_cache[0]
- value_cache = kv_cache[1]
- # Reshape the input keys and values and store them in the cache.
- # If kv_cache is not provided, the new key and value tensors are
- # not cached. This happens during the initial memory profiling run.
- ops.reshape_and_cache_flash(
- key,
- value,
- key_cache,
- value_cache,
- attn_metadata.slot_mapping.flatten(),
- self.kv_cache_dtype,
- k_scale,
- v_scale,
- )
- num_prefill_tokens = attn_metadata.num_prefill_tokens
- num_decode_tokens = attn_metadata.num_decode_tokens
- assert key.shape[0] == num_prefill_tokens + num_decode_tokens
- assert value.shape[0] == num_prefill_tokens + num_decode_tokens
- output = torch.empty_like(query)
- # Query for decode. KV is not needed because it is already cached.
- decode_query = query[num_prefill_tokens:]
- # QKV for prefill.
- query = query[:num_prefill_tokens]
- key = key[:num_prefill_tokens]
- value = value[:num_prefill_tokens]
- assert query.shape[0] == num_prefill_tokens
- assert decode_query.shape[0] == num_decode_tokens
- if prefill_meta := attn_metadata.prefill_metadata:
- # Prompt run.
- if (kv_cache is None or prefill_meta.block_tables is None
- or prefill_meta.block_tables.numel() == 0):
- # normal attention
- # When block_tables are not filled, it means q and k are the
- # prompt, and they have the same length.
- out = torch.ops.aphrodite.flash_attn_varlen_func(
- q=query,
- k=key,
- v=value,
- cu_seqlens_q=prefill_meta.seq_start_loc,
- cu_seqlens_k=prefill_meta.seq_start_loc,
- max_seqlen_q=prefill_meta.max_prefill_seq_len,
- max_seqlen_k=prefill_meta.max_prefill_seq_len,
- softmax_scale=self.scale,
- causal=True,
- window_size=self.sliding_window,
- alibi_slopes=self.alibi_slopes,
- softcap=self.logits_soft_cap,
- )
- assert output[:num_prefill_tokens].shape == out.shape
- output[:num_prefill_tokens] = out
- else:
- # prefix-enabled attention
- assert prefill_meta.seq_lens is not None
- max_seq_len = max(prefill_meta.seq_lens)
- output[:
- num_prefill_tokens] = torch.ops.aphrodite.flash_attn_varlen_func( # noqa
- q=query,
- k=key_cache,
- v=value_cache,
- cu_seqlens_q=prefill_meta.query_start_loc,
- max_seqlen_q=prefill_meta.max_query_len,
- cu_seqlens_k=prefill_meta.seq_start_loc,
- max_seqlen_k=max_seq_len,
- softmax_scale=self.scale,
- causal=True,
- alibi_slopes=self.alibi_slopes,
- block_table=prefill_meta.block_tables,
- softcap=self.logits_soft_cap,
- )
- if decode_meta := attn_metadata.decode_metadata:
- # Decoding run.
- output[
- num_prefill_tokens:] = torch.ops.aphrodite.flash_attn_with_kvcache( # noqa
- decode_query.unsqueeze(1),
- key_cache,
- value_cache,
- block_table=decode_meta.block_tables,
- cache_seqlens=decode_meta.seq_lens_tensor,
- softmax_scale=self.scale,
- causal=True,
- alibi_slopes=self.alibi_slopes,
- softcap=self.logits_soft_cap,
- ).squeeze(1)
- # Reshape the output tensor.
- return output.view(num_tokens, hidden_size)
|