1234567891011121314151617181920212223242526272829303132333435363738 |
- import torch
- import torch.distributed as dist
- from torch.distributed import ProcessGroup
- from aphrodite.platforms import current_platform
- if current_platform.is_tpu():
- import ray
- import torch_xla.core.xla_model as xm
- import torch_xla.runtime as xr
- from torch_xla._internal import pjrt
- class TpuCommunicator:
- def __init__(self, group: ProcessGroup):
- if not current_platform.is_tpu():
- self.disabled = True
- return
- self.disabled = False
- # NOTE: When using TP > 1 on TPUs, every TPU on the same node
- # must be used together. Therefore, the local rank and world
- # size can be simply calculated as follows.
- global_rank = dist.get_rank(group)
- global_world_size = dist.get_world_size(group)
- num_nodes = len(ray.nodes())
- local_world_size = global_world_size // num_nodes
- local_rank = global_rank % local_world_size
- pjrt.initialize_multiprocess(local_rank, local_world_size)
- xr._init_world_size_ordinal()
- def all_reduce(self, x: torch.Tensor) -> torch.Tensor:
- return xm.all_reduce(xm.REDUCE_SUM, x)
- def all_gather(self, x: torch.Tensor, dim: int = -1) -> torch.Tensor:
- assert dim == -1, "TPUs only support dim=-1 for all-gather."
- return xm.all_gather(x, dim=dim)
|