123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- """Compare the outputs of HF and Aphrodite for BART models using greedy
- sampling.
- Run `pytest tests/models/encoder_decoder/language/test_bart.py`.
- """
- from typing import List, Optional, Tuple, Type
- from aphrodite.common.utils import is_cpu
- if not is_cpu():
- # CPU backend is not currently supported with encoder/decoder models
- # skip test definitions entirely to avoid importing GPU kernel libs
- # (xFormers, etc.)
- import pytest
- from transformers import AutoModelForSeq2SeqLM
- from aphrodite.common.sequence import SampleLogprobs
- from ....conftest import (AphroditeRunner, DecoderPromptType,
- ExplicitEncoderDecoderPrompt, HfRunner)
- from ....utils import multi_gpu_test
- from ...utils import check_logprobs_close
- MODELS = ["facebook/bart-base", "facebook/bart-large-cnn"]
- def aphrodite_to_hf_output(
- aphrodite_output: Tuple[List[int], str, Optional[SampleLogprobs]],
- decoder_prompt_type: DecoderPromptType,
- ):
- """Sanitize aphrodite output to be comparable with hf output."""
- output_ids, output_str, out_logprobs = aphrodite_output
- hf_output_str = output_str + "</s>"
- if decoder_prompt_type == DecoderPromptType.NONE:
- hf_output_str = "<s>" + hf_output_str
- return output_ids, hf_output_str, out_logprobs
- def run_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- prompts: List[ExplicitEncoderDecoderPrompt[str, str]],
- decoder_prompt_type: DecoderPromptType,
- model: str,
- *,
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ) -> None:
- '''
- Test the Aphrodite BART model for a variety of encoder/decoder input
- prompts, by validating it against HuggingFace (HF) BART.
- Arguments:
- * hf_runner: HuggingFace (HF) test model runner
- * aphrodite_runner: Aphrodite test model runner
- * example_encoder_decoder_prompts: test fixture which provides a
- dictionary of dummy prompts
- * model: the HF ID of the specific BART variant under test
- * dtype: the tensor datatype to employ
- * max_tokens
- * num_logprobs
- * decoder_prompt_type: key into the example_encoder_decoder_prompts
- dictionary; selects specific encoder/decoder
- prompt scenarios to test
- A note on using HF BART as a baseline for validating Aphrodite BART,
- specifically when the decoder prompt is None.
-
- The HF GenerationMixin's default behavior is to force the first
- decoded token to be <BOS> if the prompt does not already contain
- <BOS> (this is accomplished using a logit
- processor setting.)
-
- So when we use HF BART as our baseline for comparison, note that
- when the user provides a request with a None decoder prompt
- (i.e. a singleton encoder prompt, or else an explicit encoder/
- decoder prompt with the decoder sub-prompt set to None), HF and
- Aphrodite handle this in different ways:
-
- * HF will (1) tokenize the None prompt as an empty token-list,
- (2) append <decoder-start-token> to the beginning, yielding
- [<decoder-start-token>], (3) pass this token list to the model, and
- then (4) after computing logits during prefill, override the model
- logits & force <BOS> to be the first generated token.
-
- * Aphrodite will (1) tokenize the None prompt as [<BOS>], (2) append
- <decoder-start-token> to the beginning, yielding
- [<decoder-start-token><BOS>], (3) pass these tokens to the model &
- proceed with generation.
-
- The net effect is that compared to Aphrodite, the list of HF *decoded*
- tokens will contain one more initial <BOS> than the Aphrodite generated
- tokens, because Aphrodite's <BOS> token is injected into the prompt
- rather than into the generated output. This is in spite of the fact
- that overall, the complete sequences (prompt + decoded tokens) produced
- by Aphrodite will match HF.
-
- So when we use HF decoded token output to validate Aphrodite's decoded
- token output, the testing process must account for the difference in
- decoded token sequences between Aphrodite and HF specifically in the
- decoder-prompt-is-None case.
-
- One option is to disable the logit processor feature that forces the
- <BOS> token to be decoded (forced_bos_token_id = None), eliminating
- the problem entirely. However this is not "normal" BART usage.
-
- The other option is - only in the decoder-prompt-is-None case - to
- discard the first decoded token from the HF output before comparing it
- to Aphrodite.
- To that end, when testing the scenario where the decoder prompt is None
- (and only in that one scenario), this test skips the first HF decoded
- token during the process of validating the Aphrodite decoded output.
- '''
- # NOTE: take care of the order. run Aphrodite first, and then run HF.
- # Aphrodite needs a fresh new process without cuda initialization.
- # if we run HF first, the cuda initialization will be done and it
- # will hurt multiprocessing backend with fork method (the default).
- # Note: currently encoder/decoder models are only compatible with
- # enforce_eager=True. Normally this is not a problem because
- # for encoder/decoder models Aphrodite will
- # default to enforce_eager=True if enforce_eager
- # is left unspecified. However, the
- # AphroditeRunner test fixture (which wraps around the LLM class)
- # defaults to enforce_eager=False (a behavior which a number of
- # already-exisitng decoder-only unit tests expect), so when testing
- # an encoder/decoder model we must explicitly specify enforce_eager=True
- # in the AphroditeRunner constructor.
- with aphrodite_runner(
- model,
- dtype=dtype,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True) as aphrodite_model:
- aphrodite_outputs = (
- aphrodite_model.generate_encoder_decoder_greedy_logprobs(
- prompts, max_tokens, num_logprobs)
- )
- # Configuration settings for HF baseline
- hf_kwargs = {
- "top_k": None,
- "num_beams": 1,
- "repetition_penalty": 1.0,
- "top_p": 1.0,
- "length_penalty": 1.0,
- "early_stopping": False,
- "no_repeat_ngram_size": None,
- "min_length": 0
- }
- with hf_runner(model, dtype=dtype,
- auto_cls=AutoModelForSeq2SeqLM) as hf_model:
- hf_outputs = (
- hf_model.generate_encoder_decoder_greedy_logprobs_limit(
- prompts,
- max_tokens,
- num_logprobs,
- **hf_kwargs,
- ))
- hf_skip_tokens = (1 if decoder_prompt_type == DecoderPromptType.NONE
- else 0)
- check_logprobs_close(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=[
- aphrodite_to_hf_output(aphrodite_output, decoder_prompt_type)
- for aphrodite_output in aphrodite_outputs
- ],
- name_0="hf",
- name_1="aphrodite",
- num_outputs_0_skip_tokens=hf_skip_tokens,
- )
- @pytest.mark.parametrize("model", MODELS)
- @pytest.mark.parametrize("dtype", ["float", "bfloat16"])
- @pytest.mark.parametrize("max_tokens", [64])
- @pytest.mark.parametrize("num_logprobs", [5])
- @pytest.mark.parametrize("decoder_prompt_type", list(DecoderPromptType))
- def test_models(hf_runner, aphrodite_runner,
- example_encoder_decoder_prompts,
- model, dtype, max_tokens, num_logprobs,
- decoder_prompt_type) -> None:
- run_test(
- hf_runner,
- aphrodite_runner,
- example_encoder_decoder_prompts[decoder_prompt_type],
- decoder_prompt_type,
- model,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- tensor_parallel_size=1,
- )
- @multi_gpu_test(num_gpus=2)
- @pytest.mark.parametrize("distributed_executor_backend", ["ray", "mp"])
- @pytest.mark.parametrize("model", ["facebook/bart-large-cnn"])
- @pytest.mark.parametrize("dtype", ["float"])
- @pytest.mark.parametrize("max_tokens", [64])
- @pytest.mark.parametrize("num_logprobs", [5])
- @pytest.mark.parametrize("decoder_prompt_type", [DecoderPromptType.CUSTOM])
- def test_models_distributed(hf_runner, aphrodite_runner,
- example_encoder_decoder_prompts,
- distributed_executor_backend, model, dtype,
- max_tokens, num_logprobs,
- decoder_prompt_type) -> None:
- run_test(
- hf_runner,
- aphrodite_runner,
- example_encoder_decoder_prompts[decoder_prompt_type],
- decoder_prompt_type,
- model,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- tensor_parallel_size=2,
- distributed_executor_backend=distributed_executor_backend,
- )
|