123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- import base64
- import numpy as np
- import openai
- import pytest
- from ...utils import RemoteOpenAIServer
- EMBEDDING_MODEL_NAME = "intfloat/e5-mistral-7b-instruct"
- @pytest.fixture(scope="module")
- def embedding_server():
- args = [
- # use half precision for speed and memory savings in CI environment
- "--dtype",
- "bfloat16",
- "--enforce-eager",
- "--max-model-len",
- "8192",
- ]
- with RemoteOpenAIServer(EMBEDDING_MODEL_NAME, args) as remote_server:
- yield remote_server
- @pytest.mark.asyncio
- @pytest.fixture(scope="module")
- def embedding_client(embedding_server):
- return embedding_server.get_async_client()
- @pytest.mark.asyncio
- @pytest.mark.parametrize(
- "model_name",
- [EMBEDDING_MODEL_NAME],
- )
- async def test_single_embedding(embedding_client: openai.AsyncOpenAI,
- model_name: str):
- input_texts = [
- "The chef prepared a delicious meal.",
- ]
- # test single embedding
- embeddings = await embedding_client.embeddings.create(
- model=model_name,
- input=input_texts,
- encoding_format="float",
- )
- assert embeddings.id is not None
- assert len(embeddings.data) == 1
- assert len(embeddings.data[0].embedding) == 4096
- assert embeddings.usage.completion_tokens == 0
- assert embeddings.usage.prompt_tokens == 9
- assert embeddings.usage.total_tokens == 9
- # test using token IDs
- input_tokens = [1, 1, 1, 1, 1]
- embeddings = await embedding_client.embeddings.create(
- model=model_name,
- input=input_tokens,
- encoding_format="float",
- )
- assert embeddings.id is not None
- assert len(embeddings.data) == 1
- assert len(embeddings.data[0].embedding) == 4096
- assert embeddings.usage.completion_tokens == 0
- assert embeddings.usage.prompt_tokens == 5
- assert embeddings.usage.total_tokens == 5
- @pytest.mark.asyncio
- @pytest.mark.parametrize(
- "model_name",
- [EMBEDDING_MODEL_NAME],
- )
- async def test_batch_embedding(embedding_client: openai.AsyncOpenAI,
- model_name: str):
- # test List[str]
- input_texts = [
- "The cat sat on the mat.", "A feline was resting on a rug.",
- "Stars twinkle brightly in the night sky."
- ]
- embeddings = await embedding_client.embeddings.create(
- model=model_name,
- input=input_texts,
- encoding_format="float",
- )
- assert embeddings.id is not None
- assert len(embeddings.data) == 3
- assert len(embeddings.data[0].embedding) == 4096
- # test List[List[int]]
- input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
- [25, 32, 64, 77]]
- embeddings = await embedding_client.embeddings.create(
- model=model_name,
- input=input_tokens,
- encoding_format="float",
- )
- assert embeddings.id is not None
- assert len(embeddings.data) == 4
- assert len(embeddings.data[0].embedding) == 4096
- assert embeddings.usage.completion_tokens == 0
- assert embeddings.usage.prompt_tokens == 17
- assert embeddings.usage.total_tokens == 17
- @pytest.mark.asyncio
- @pytest.mark.parametrize(
- "model_name",
- [EMBEDDING_MODEL_NAME],
- )
- async def test_batch_base64_embedding(embedding_client: openai.AsyncOpenAI,
- model_name: str):
- input_texts = [
- "Hello my name is",
- "The best thing about Aphrodite is that it supports many different models" # noqa: E501
- ]
- responses_float = await embedding_client.embeddings.create(
- input=input_texts, model=model_name, encoding_format="float")
- responses_base64 = await embedding_client.embeddings.create(
- input=input_texts, model=model_name, encoding_format="base64")
- decoded_responses_base64_data = []
- for data in responses_base64.data:
- decoded_responses_base64_data.append(
- np.frombuffer(base64.b64decode(data.embedding),
- dtype="float32").tolist())
- assert responses_float.data[0].embedding == decoded_responses_base64_data[
- 0]
- assert responses_float.data[1].embedding == decoded_responses_base64_data[
- 1]
- # Default response is float32 decoded from base64 by OpenAI Client
- responses_default = await embedding_client.embeddings.create(
- input=input_texts, model=model_name)
- assert responses_float.data[0].embedding == responses_default.data[
- 0].embedding
- assert responses_float.data[1].embedding == responses_default.data[
- 1].embedding
|