1
0

tpu_worker.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301
  1. import os
  2. from typing import List, Optional, Tuple, Union
  3. import torch
  4. import torch_xla.core.xla_model as xm
  5. import torch_xla.runtime as xr
  6. import aphrodite.common.envs as envs
  7. from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
  8. ModelConfig, ParallelConfig,
  9. SchedulerConfig)
  10. from aphrodite.common.sequence import ExecuteModelRequest
  11. from aphrodite.common.utils import STR_DTYPE_TO_TORCH_DTYPE, get_dtype_size
  12. from aphrodite.distributed import (ensure_model_parallel_initialized,
  13. init_distributed_environment)
  14. from aphrodite.modeling import set_random_seed
  15. from aphrodite.worker.tpu_model_runner import TPUModelRunner
  16. from aphrodite.worker.worker_base import (LocalOrDistributedWorkerBase,
  17. LoraNotSupportedWorkerBase,
  18. WorkerInput)
  19. class TPUWorker(LoraNotSupportedWorkerBase, LocalOrDistributedWorkerBase):
  20. def __init__(
  21. self,
  22. model_config: ModelConfig,
  23. parallel_config: ParallelConfig,
  24. scheduler_config: SchedulerConfig,
  25. device_config: DeviceConfig,
  26. cache_config: CacheConfig,
  27. load_config: LoadConfig,
  28. local_rank: int,
  29. rank: int,
  30. distributed_init_method: str,
  31. is_driver_worker: bool,
  32. ) -> None:
  33. self.model_config = model_config
  34. self.parallel_config = parallel_config
  35. self.parallel_config.rank = rank
  36. self.scheduler_config = scheduler_config
  37. self.device_config = device_config
  38. self.cache_config = cache_config
  39. self.load_config = load_config
  40. self.local_rank = local_rank
  41. self.rank = rank
  42. self.distributed_init_method = distributed_init_method
  43. self.is_driver_worker = is_driver_worker
  44. assert self.device_config.device_type == "tpu"
  45. if self.cache_config.cache_dtype == "auto":
  46. self.cache_dtype = self.model_config.dtype
  47. else:
  48. self.cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
  49. self.cache_config.cache_dtype]
  50. self.model_runner: TPUModelRunner = TPUModelRunner(
  51. model_config,
  52. parallel_config,
  53. scheduler_config,
  54. device_config,
  55. cache_config,
  56. load_config,
  57. is_driver_worker=is_driver_worker)
  58. def init_device(self) -> None:
  59. os.environ["PJRT_DEVICE"] = "TPU"
  60. torch.set_grad_enabled(False)
  61. torch.set_default_dtype(self.model_config.dtype)
  62. # NOTE: This is just to initialize the TP group and broadcast
  63. # the input objects on CPU. The all-reduce and all-gather ops on TPU
  64. # are invoked by `xm.all_reduce` and `xm.all_gather` which use their
  65. # own context.
  66. init_distributed_environment(
  67. world_size=self.parallel_config.world_size,
  68. rank=self.rank,
  69. local_rank=self.local_rank,
  70. distributed_init_method=self.distributed_init_method,
  71. backend="gloo",
  72. )
  73. ensure_model_parallel_initialized(
  74. self.parallel_config.tensor_parallel_size,
  75. self.parallel_config.pipeline_parallel_size)
  76. # Device initialization should happen after initializing the distributed
  77. # runtime.
  78. self.device = xm.xla_device()
  79. self.device_config.device = self.device
  80. # Set random seed.
  81. set_random_seed(self.model_config.seed)
  82. xm.set_rng_state(self.model_config.seed, self.device)
  83. # Increase the cache size limit, which is the maximum number of
  84. # dynamo graphs that can be compiled.
  85. # NOTE: Usually, we compile 10-15 graphs for prefill and
  86. # 30-40 graphs for decode. 128 is an arbitrary safe number.
  87. torch._dynamo.config.cache_size_limit = 128
  88. # Use persistent cache to avoid XLA recompilation.
  89. # NOTE: Set per-rank cache path since different ranks
  90. # can have slightly different XLA graphs.
  91. world_size = self.parallel_config.world_size
  92. rank = xr.global_ordinal()
  93. per_rank_path = os.path.join(envs.APHRODITE_XLA_CACHE_PATH,
  94. f"tp{world_size}_rank{rank}")
  95. xr.initialize_cache(per_rank_path, readonly=False)
  96. def load_model(self):
  97. self.model_runner.load_model()
  98. def determine_num_available_blocks(self) -> Tuple[int, int]:
  99. num_layers = self.model_config.get_num_layers(self.parallel_config)
  100. head_size = self.model_config.get_head_size()
  101. num_kv_heads = self.model_config.get_num_kv_heads(self.parallel_config)
  102. kv_caches = [(None, None) for _ in range(num_layers)]
  103. self.model_runner._dummy_run(
  104. batch_size=1,
  105. seq_len=self.scheduler_config.max_num_batched_tokens,
  106. kv_caches=kv_caches,
  107. is_prompt=True,
  108. )
  109. # Synchronize before measuring the memory usage.
  110. xm.wait_device_ops()
  111. dtype_btyes = get_dtype_size(self.cache_dtype)
  112. block_size = self.cache_config.block_size
  113. block_size_bytes = (dtype_btyes * block_size * num_layers * 2 *
  114. head_size * num_kv_heads)
  115. # Calculate the TPU KV cache size based on profiling.
  116. m = xm.get_memory_info(self.device)
  117. total_memory_size = m["bytes_limit"]
  118. usable_memory_size = int(total_memory_size *
  119. self.cache_config.gpu_memory_utilization)
  120. profiled = m["bytes_used"] # Weights + intermediate activations.
  121. tpu_kv_cache_bytes = max(usable_memory_size - profiled, 0)
  122. num_tpu_blocks = tpu_kv_cache_bytes // block_size_bytes
  123. num_tpu_blocks = (num_tpu_blocks // 8) * 8 # Round down to 8.
  124. # Calculate the CPU KV cache size based on the config.
  125. num_cpu_blocks = int(self.cache_config.swap_space_bytes //
  126. block_size_bytes)
  127. num_cpu_blocks = (num_cpu_blocks // 8) * 8 # Round down to 8.
  128. return num_tpu_blocks, num_cpu_blocks
  129. def initialize_cache(
  130. self,
  131. num_gpu_blocks: int,
  132. num_cpu_blocks: int,
  133. ) -> None:
  134. self.cache_config.num_gpu_blocks = num_gpu_blocks
  135. self.cache_config.num_cpu_blocks = num_cpu_blocks
  136. self.block_size = self.cache_config.block_size
  137. dtype = self.cache_dtype
  138. num_layers = self.model_config.get_num_layers(self.parallel_config)
  139. num_kv_heads = self.model_config.get_num_kv_heads(self.parallel_config)
  140. head_size = self.model_config.get_head_size()
  141. self.cpu_cache: List[Tuple[torch.Tensor, torch.Tensor]] = []
  142. self.tpu_cache: List[Tuple[torch.Tensor, torch.Tensor]] = []
  143. tpu_cache_shape = self.model_runner.attn_backend.get_kv_cache_shape(
  144. num_gpu_blocks, self.block_size, num_kv_heads, head_size)
  145. cpu_cache_shape = self.model_runner.attn_backend.get_kv_cache_shape(
  146. num_cpu_blocks, self.block_size, num_kv_heads, head_size)
  147. for _ in range(num_layers):
  148. tpu_k_cache = torch.zeros(tpu_cache_shape,
  149. dtype=dtype,
  150. device=self.device)
  151. tpu_v_cache = torch.zeros_like(tpu_k_cache)
  152. self.tpu_cache.append((tpu_k_cache, tpu_v_cache))
  153. cpu_k_cache = torch.zeros(cpu_cache_shape,
  154. dtype=dtype,
  155. device="cpu")
  156. cpu_v_cache = torch.zeros_like(cpu_k_cache)
  157. self.cpu_cache.append((cpu_k_cache, cpu_v_cache))
  158. self._warmup_model()
  159. def _warmup_model(self) -> None:
  160. # FIXME: Here we are abusing `enforce_eager` which is defined
  161. # for CUDA graphs. We should refactor this part.
  162. if not self.model_config.enforce_eager:
  163. # Warm up the model with all possible input shapes so that
  164. # compilation never happens during the actual execution.
  165. # This may take ~30 mins for the first run and ~20 mins for the
  166. # subsequent runs.
  167. # If `enforce_eager` is True, the ahead-of-time compilation is
  168. # skipped and the compilation happens during the actual execution,
  169. # which is bad for performance but useful for development.
  170. self.model_runner.warmup_model(self.tpu_cache)
  171. def get_cache_block_size_bytes(self) -> int:
  172. head_size = self.model_config.get_head_size()
  173. num_heads = self.model_config.get_num_kv_heads(self.parallel_config)
  174. num_layers = self.model_config.get_num_layers(self.parallel_config)
  175. key_cache_block = self.cache_config.block_size * num_heads * head_size
  176. value_cache_block = key_cache_block
  177. total = num_layers * (key_cache_block + value_cache_block)
  178. dtype_size = get_dtype_size(self.cache_dtype)
  179. return dtype_size * total
  180. @property
  181. def do_metadata_broadcast(self) -> bool:
  182. return self.parallel_config.tensor_parallel_size > 1
  183. @property
  184. def kv_cache(self) -> Optional[List[List[torch.Tensor]]]:
  185. # NOTE: This assumes virtual_engine == 0, i.e., no pipeline
  186. # parallelism.
  187. return [self.tpu_cache]
  188. def prepare_worker_input(
  189. self,
  190. execute_model_req: ExecuteModelRequest,
  191. ) -> WorkerInput:
  192. virtual_engine = execute_model_req.virtual_engine
  193. num_seq_groups = len(execute_model_req.seq_group_metadata_list)
  194. blocks_to_swap_in = _make_src_to_dst(
  195. execute_model_req.blocks_to_swap_in, "cpu", self.device)
  196. blocks_to_swap_out = _make_src_to_dst(
  197. execute_model_req.blocks_to_swap_out, self.device, "cpu")
  198. blocks_to_copy = _make_src_to_dst(execute_model_req.blocks_to_copy,
  199. self.device, self.device)
  200. return WorkerInput(
  201. num_seq_groups=num_seq_groups,
  202. blocks_to_swap_in=blocks_to_swap_in,
  203. blocks_to_swap_out=blocks_to_swap_out,
  204. blocks_to_copy=blocks_to_copy,
  205. virtual_engine=virtual_engine,
  206. )
  207. def execute_worker(self, worker_input: WorkerInput) -> None:
  208. virtual_engine = worker_input.virtual_engine
  209. assert virtual_engine == 0
  210. attn_backend = self.model_runner.attn_backend
  211. num_layers = self.model_config.get_num_layers(self.parallel_config)
  212. # Issue cache operations.
  213. if worker_input.blocks_to_swap_in is not None:
  214. src_indices, dst_indices = worker_input.blocks_to_swap_in
  215. if src_indices.numel() > 0:
  216. # Swap from CPU to TPU.
  217. for i in range(num_layers):
  218. tpu_k_cache, tpu_v_cache = self.tpu_cache[i]
  219. cpu_k_cache, cpu_v_cache = self.cpu_cache[i]
  220. k = cpu_k_cache[:, src_indices].to(self.device)
  221. v = cpu_v_cache[:, src_indices].to(self.device)
  222. _insert_kv(k, v, dst_indices, tpu_k_cache, tpu_v_cache)
  223. if worker_input.blocks_to_swap_out is not None:
  224. src_indices, dst_indices = worker_input.blocks_to_swap_out
  225. if src_indices.numel() > 0:
  226. # Swap from TPU to CPU.
  227. for i in range(num_layers):
  228. tpu_k_cache, tpu_v_cache = self.tpu_cache[i]
  229. cpu_k_cache, cpu_v_cache = self.cpu_cache[i]
  230. cpu_k_cache[:, dst_indices] = tpu_k_cache[:, src_indices]
  231. cpu_v_cache[:, dst_indices] = tpu_v_cache[:, src_indices]
  232. if worker_input.blocks_to_copy is not None:
  233. src_indices, dst_indices = worker_input.blocks_to_copy
  234. if src_indices.numel() > 0:
  235. attn_backend.copy_blocks(self.tpu_cache,
  236. (src_indices, dst_indices))
  237. def _make_src_to_dst(
  238. mapping: List[Tuple[int, int]],
  239. src_device: Union[torch.device, str],
  240. dst_device: Union[torch.device, str],
  241. ) -> Optional[Tuple[torch.Tensor, torch.Tensor]]:
  242. if not mapping:
  243. return None
  244. src_indices = [i for i, _ in mapping]
  245. dst_indices = [i for _, i in mapping]
  246. src_indices = torch.tensor(src_indices,
  247. device=src_device,
  248. dtype=torch.int64)
  249. dst_indices = torch.tensor(dst_indices,
  250. device=dst_device,
  251. dtype=torch.int64)
  252. return src_indices, dst_indices
  253. @torch.compile(backend="openxla")
  254. def _insert_kv(
  255. k: torch.Tensor,
  256. v: torch.Tensor,
  257. indices: torch.Tensor,
  258. tpu_k_cache: torch.Tensor,
  259. tpu_v_cache: torch.Tensor,
  260. ) -> None:
  261. torch.ops.xla.dynamo_set_buffer_donor_(tpu_k_cache, True)
  262. torch.ops.xla.dynamo_set_buffer_donor_(tpu_v_cache, True)
  263. tpu_k_cache[:, indices] = k
  264. tpu_v_cache[:, indices] = v