int8_quant_kernels.cu 2.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. #include <ATen/cuda/CUDAContext.h>
  2. #include <torch/extension.h>
  3. #include <cmath>
  4. #include "../../dispatch_utils.h"
  5. static inline __device__ int8_t float_to_int8_rn(float x) {
  6. #ifdef USE_ROCM
  7. static const float i8_min =
  8. static_cast<float>(std::numeric_limits<int8_t>::min());
  9. static const float i8_max =
  10. static_cast<float>(std::numeric_limits<int8_t>::max());
  11. // round
  12. float dst = std::nearbyint(x);
  13. // saturate
  14. dst = std::clamp(dst, i8_min, i8_max);
  15. return static_cast<int8_t>(dst);
  16. #else
  17. // CUDA path
  18. uint32_t dst;
  19. asm volatile("cvt.rni.sat.s8.f32 %0, %1;" : "=r"(dst) : "f"(x));
  20. return reinterpret_cast<const int8_t&>(dst);
  21. #endif
  22. }
  23. namespace aphrodite {
  24. template <typename scalar_t, typename scale_type>
  25. __global__ void static_scaled_int8_quant_kernel(
  26. const scalar_t* __restrict__ input, int8_t* __restrict__ out,
  27. const scale_type* scale_ptr, const int hidden_size) {
  28. const int tid = threadIdx.x;
  29. const int token_idx = blockIdx.x;
  30. scale_type scale = *scale_ptr;
  31. for (int i = tid; i < hidden_size; i += blockDim.x) {
  32. out[token_idx * hidden_size + i] =
  33. float_to_int8_rn(((float)input[token_idx * hidden_size + i]) / scale);
  34. }
  35. }
  36. } // namespace aphrodite
  37. void static_scaled_int8_quant(torch::Tensor& out, // [..., hidden_size]
  38. torch::Tensor const& input, // [..., hidden_size]
  39. torch::Tensor const& scale) {
  40. TORCH_CHECK(input.is_contiguous());
  41. TORCH_CHECK(out.is_contiguous());
  42. TORCH_CHECK(scale.numel() == 1);
  43. int hidden_size = input.size(-1);
  44. int num_tokens = input.numel() / hidden_size;
  45. dim3 grid(num_tokens);
  46. dim3 block(std::min(hidden_size, 1024));
  47. const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  48. APHRODITE_DISPATCH_FLOATING_TYPES(
  49. input.scalar_type(), "static_scaled_int8_quant_kernel", [&] {
  50. aphrodite::static_scaled_int8_quant_kernel<scalar_t, float>
  51. <<<grid, block, 0, stream>>>(input.data_ptr<scalar_t>(),
  52. out.data_ptr<int8_t>(),
  53. scale.data_ptr<float>(), hidden_size);
  54. });
  55. }