logits_processor.py 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131
  1. """A layer that compute logits from hidden_stats."""
  2. import inspect
  3. from typing import Optional
  4. import torch
  5. import torch.nn as nn
  6. from aphrodite.distributed import tensor_model_parallel_gather
  7. from aphrodite.modeling.layers.vocab_parallel_embedding import \
  8. VocabParallelEmbedding
  9. from aphrodite.modeling.sampling_metadata import SamplingMetadata
  10. class LogitsProcessor(nn.Module):
  11. """Process logits and apply logits processors from sampling metadata.
  12. This layer does the following:
  13. 1. Gather logits from model hidden_states.
  14. 2. Scale logits if needed.
  15. 3. Apply logits processors (if any).
  16. """
  17. def __init__(self,
  18. vocab_size: int,
  19. org_vocab_size: Optional[int] = None,
  20. scale: float = 1.0,
  21. logits_as_input: bool = False) -> None:
  22. """
  23. Args:
  24. scale: A scaling factor to apply to the logits.
  25. """
  26. super().__init__()
  27. self.scale = scale
  28. self.vocab_size = vocab_size
  29. # Whether the input is logits (default is hidden states).
  30. self.logits_as_input = logits_as_input
  31. # original vocabulary size (without LoRA).
  32. self.org_vocab_size = org_vocab_size or vocab_size
  33. def forward(
  34. self,
  35. lm_head: VocabParallelEmbedding,
  36. hidden_states: torch.Tensor,
  37. sampling_metadata: SamplingMetadata,
  38. embedding_bias: Optional[torch.Tensor] = None,
  39. ) -> torch.Tensor:
  40. if self.logits_as_input:
  41. logits = hidden_states
  42. else:
  43. hidden_states = _prune_hidden_states(hidden_states,
  44. sampling_metadata)
  45. # Get the logits for the next tokens.
  46. logits = self._get_logits(hidden_states, lm_head, embedding_bias)
  47. if logits is not None:
  48. if self.scale != 1.0:
  49. logits *= self.scale
  50. # Apply logits processors (if any).
  51. logits = _apply_logits_processors(logits, sampling_metadata)
  52. return logits
  53. def _get_logits(self, hidden_states: torch.Tensor,
  54. lm_head: VocabParallelEmbedding,
  55. embedding_bias: Optional[torch.Tensor]) -> torch.Tensor:
  56. # Get the logits for the next tokens.
  57. logits = lm_head.linear_method.apply(lm_head,
  58. hidden_states,
  59. bias=embedding_bias)
  60. logits = tensor_model_parallel_gather(logits)
  61. # Remove paddings in vocab (if any).
  62. if logits is not None:
  63. logits = logits[:, :self.org_vocab_size]
  64. return logits
  65. def extra_repr(self) -> str:
  66. s = f"vocab_size={self.vocab_size}"
  67. s += f", forg_vocab_size={self.org_vocab_size}"
  68. s += f", scale={self.scale}, logits_as_input={self.logits_as_input}"
  69. return s
  70. def _prune_hidden_states(
  71. hidden_states: torch.Tensor,
  72. sampling_metadata: SamplingMetadata,
  73. ) -> torch.Tensor:
  74. return hidden_states.index_select(0,
  75. sampling_metadata.selected_token_indices)
  76. def _apply_logits_processors(
  77. logits: torch.Tensor,
  78. sampling_metadata: SamplingMetadata,
  79. ) -> torch.Tensor:
  80. found_logits_processors = False
  81. logits_processed = 0
  82. for seq_group in sampling_metadata.seq_groups:
  83. seq_ids = seq_group.seq_ids
  84. sampling_params = seq_group.sampling_params
  85. logits_processors = sampling_params.logits_processors
  86. if logits_processors:
  87. found_logits_processors = True
  88. for seq_id, logits_row_idx in zip(seq_ids,
  89. seq_group.sample_indices):
  90. logits_row = logits[logits_row_idx]
  91. past_tokens_ids = seq_group.seq_data[seq_id].output_token_ids
  92. prompt_tokens_ids = seq_group.seq_data[seq_id].prompt_token_ids
  93. for logits_processor in logits_processors:
  94. parameters = inspect.signature(logits_processor).parameters
  95. if len(parameters) == 3:
  96. logits_row = logits_processor(prompt_tokens_ids,
  97. past_tokens_ids,
  98. logits_row)
  99. else:
  100. logits_row = logits_processor(past_tokens_ids,
  101. logits_row)
  102. logits[logits_row_idx] = logits_row
  103. logits_processed += len(seq_group.sample_indices) + len(
  104. seq_group.prompt_logprob_indices)
  105. if found_logits_processors:
  106. # verifies that no rows in logits were missed unexpectedly
  107. assert logits_processed == logits.shape[0]
  108. return logits