PygmalionAI's large-scale inference engine
pygmalion.chat

It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

AlpinDale 05e45aeb53 fix: dtype mismatch for paligemma 6 luni în urmă
.github 04d22bf1a9 add clang-format 7 luni în urmă
aphrodite 05e45aeb53 fix: dtype mismatch for paligemma 6 luni în urmă
assets b3df2351c8 readme: update with bsz1 graph 1 an în urmă
cmake 271a680026 feat: inference support for PowerPC ISA 7 luni în urmă
examples a3b56353fa fix: another one missed 6 luni în urmă
kernels ad24e74a99 feat: FP8 weight-only quantization support for Ampere GPUs 6 luni în urmă
rocm_patch 13d850334e fix: navi support (#283) 1 an în urmă
tests 7b04361934 fix: support getting `eos_token_id` from the config file 7 luni în urmă
.clang-format 04d22bf1a9 add clang-format 7 luni în urmă
.dockerignore 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) 7 luni în urmă
.env f6250c5516 move dockerfiles to root; fix cpu build 7 luni în urmă
.gitignore 7b04361934 fix: support getting `eos_token_id` from the config file 7 luni în urmă
CMakeLists.txt ddb28a80a3 fix: bump torch for rocm, unify CUDA_VISIBLE_DEVICES for cuda and rocm 6 luni în urmă
CODE_OF_CONDUCT.md 9c45fe9a2a openai: fix metrics endpoint (#512) 8 luni în urmă
CONTRIBUTING.md 9c45fe9a2a openai: fix metrics endpoint (#512) 8 luni în urmă
Dockerfile 3798ecc309 chore: add flashinfer to default dockerfile 6 luni în urmă
Dockerfile.cpu a5fafaa9ce chore: add more tuning for the CPU backend via intel-openmp 6 luni în urmă
Dockerfile.neuron f6250c5516 move dockerfiles to root; fix cpu build 7 luni în urmă
Dockerfile.openvino 0886c361f4 feat: OpenVINO CPU backend (#576) 7 luni în urmă
Dockerfile.ppc64le 271a680026 feat: inference support for PowerPC ISA 7 luni în urmă
Dockerfile.rocm ddb28a80a3 fix: bump torch for rocm, unify CUDA_VISIBLE_DEVICES for cuda and rocm 6 luni în urmă
Dockerfile.tpu 1cb06835a0 fix: TPU multimodal kwargs and outlines installation in TPU docker 6 luni în urmă
Dockerfile.xpu 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) 7 luni în urmă
LICENSE 5adcb33e14 Revert license back to AGPLv3 (#38) 1 an în urmă
MANIFEST.in a4a0423149 include more device requirements in manifest 7 luni în urmă
README.md 949f0445de readme: update installation command 10 luni în urmă
build-linux-wheel.sh 9d81716bfd [v0.5.3] Release Candidate (#388) 10 luni în urmă
docker-compose.yml f6250c5516 move dockerfiles to root; fix cpu build 7 luni în urmă
entrypoint.sh f6250c5516 move dockerfiles to root; fix cpu build 7 luni în urmă
env.py e42a78381a feat: switch from pylint to ruff (#322) 1 an în urmă
environment.yaml 9d81716bfd [v0.5.3] Release Candidate (#388) 10 luni în urmă
formatting.sh 04d22bf1a9 add clang-format 7 luni în urmă
mypy.ini 9d81716bfd [v0.5.3] Release Candidate (#388) 10 luni în urmă
patch_xformers.rocm.sh 13d850334e fix: navi support (#283) 1 an în urmă
pyproject.toml 9d81716bfd [v0.5.3] Release Candidate (#388) 10 luni în urmă
requirements-build.txt 89ee54dcff update dockerfile and enhance serving benchmark 7 luni în urmă
requirements-common.txt 8a44866e00 restrict outlines to < 0.1 6 luni în urmă
requirements-cpu.txt 271a680026 feat: inference support for PowerPC ISA 7 luni în urmă
requirements-cuda.txt 5be90c3859 Mamba infrastrucuture support (#586) 6 luni în urmă
requirements-dev.txt 690110a051 feat: bitsandbytes quantization 7 luni în urmă
requirements-neuron.txt 9d81716bfd [v0.5.3] Release Candidate (#388) 10 luni în urmă
requirements-openvino.txt 5ac65d2d49 chore: bump optimum-intel 6 luni în urmă
requirements-rocm.txt 9d81716bfd [v0.5.3] Release Candidate (#388) 10 luni în urmă
requirements-tpu.txt fe21123a1c feat: TPU support (#570) 7 luni în urmă
requirements-xpu.txt 6a57861fca feat: initial XPU support via intel_extension_for_pytorch (#571) 7 luni în urmă
runtime.sh cbe37e8b18 fix: speed up cuda home detection (#288) 1 an în urmă
setup.py 0886c361f4 feat: OpenVINO CPU backend (#576) 7 luni în urmă
update-runtime.sh 9d81716bfd [v0.5.3] Release Candidate (#388) 10 luni în urmă

README.md

Breathing Life into Language

aphrodite

Aphrodite is the official backend engine for PygmalionAI. It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

Aphrodite builds upon and integrates the exceptional work from various projects.

The compute necessary for Aphrodite's development is provided by Arc Compute.

Features

  • Continuous Batching
  • Efficient K/V management with PagedAttention from vLLM
  • Optimized CUDA kernels for improved inference
  • Quantization support via AQLM, AWQ, Bitsandbytes, EXL2, GGUF, GPTQ, QuIP#, Smoothquant+, and SqueezeLLM
  • Distributed inference
  • Variety of sampling methods (Mirostat, Locally Typical Sampling, Tail-Free Sampling, etc)
  • 8-bit KV Cache for higher context lengths and throughput, at both FP8 and INT8 formats.

Quickstart

Install the engine:

$ pip install -U aphrodite-engine --extra-index-url https://downloads.pygmalion.chat/whl

Then launch a model:

$ aphrodite run meta-llama/Meta-Llama-3-8B-Instruct

This will create a OpenAI-compatible API server that can be accessed at port 2242 of the localhost. You can plug in the API into a UI that supports OpenAI, such as SillyTavern.

Please refer to the wiki for the full list of arguments and flags you can pass to the engine.

You can play around with the engine in the demo here:

Open In Colab

Docker

Additionally, we provide a Docker image for easy deployment. Here's a basic command to get you started:

sudo docker run -d -e MODEL_NAME="mistralai/Mistral-7B-Instruct-v0.2" -p 2242:2242 --gpus all --ipc host alpindale/aphrodite-engine

This will pull the Aphrodite Engine image (~9GiB download), and launch the engine with the Mistral-7B model at port 2242. Check here for the full list of env variables.

See here for the Compose file to use with Docker Compose.

Requirements

  • Operating System: Linux (or WSL for Windows)
  • Python: at least 3.8

For windows users, it's recommended to use tabbyAPI instead, if you do not need batching support.

Build Requirements:

  • CUDA >= 11

For supported GPUs, see here. Generally speaking, all semi-modern GPUs are supported - down to Pascal (GTX 10xx, P40, etc.)

Installation

Usage

For usage, please refer to the wiki page for detailed instructions. Aphrodite provides many different options for LLM inference, so please read through the list of options here.

Performance

Speeds vary with different GPUs, model sizes, quantization schemes, batch sizes, etc. Here are some baseline benchmarks conducted by requesting as many completions as possible from the API server.

Batch Size 1 Performance

These are the speeds a user would normally get if they request a single output with a sizable prompt and output length. Essentially, normal chatting experience.

The following results were gathered by sending a request with 8192 prompt tokens and requesting 1024 tokens with ignore_eos=True.

GPU: NVIDIA A40, Mistral 7B. Baseline is the same model loaded with text-generation-webui in FP16.

High Batch Size Performance

Work in Progress.

Notes

  1. By design, Aphrodite takes up 90% of your GPU's VRAM. If you're not serving an LLM at scale, you may want to limit the amount of memory it takes up. You can do this in the API example by launching the server with the --gpu-memory-utilization 0.6 (0.6 means 60%).

  2. You can view the full list of commands by running aphrodite run --help.

  3. Context Length extension via the RoPE method is supported for most models. Use the command-line flag --max-model-len to specify a desired context length and the engine will adjust the RoPE scaling accordingly.

  4. Please refer to the FAQ & Issues if you run into problems. If you don't find an answer there, please make an issue.

Acknowledgements

Aphrodite Engine would have not been possible without the phenomenal work of other open-source projects. Credits go to:

Contributing

Everyone is welcome to contribute. You can support the project by opening Pull Requests for new features, fixes, or general UX improvements.