123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- import numpy
- import torch
- SUPPORTED_NUM_BITS = [4, 8]
- SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
- def get_pack_factor(num_bits):
- assert num_bits in SUPPORTED_NUM_BITS, f"Unsupported num_bits = {num_bits}"
- return 32 // num_bits
- def permute_rows(q_w: torch.Tensor, w_ref: torch.Tensor, group_size: int):
- assert q_w.shape == w_ref.shape
- orig_device = q_w.device
- k_size, _ = q_w.shape
- g_idx = torch.zeros((k_size, ), dtype=torch.int32)
- for i in range(k_size):
- g_idx[i] = i // group_size
- # Simulate act_order by doing a random permutation on K
- rand_perm = torch.randperm(k_size)
- g_idx = g_idx[rand_perm].contiguous()
- q_w = q_w[rand_perm, :].contiguous()
- w_ref = w_ref[rand_perm, :].contiguous()
- return (
- w_ref.to(device=orig_device),
- q_w.to(device=orig_device),
- g_idx.to(device=orig_device),
- rand_perm.to(device=orig_device),
- )
- def quantize_weights(w: torch.Tensor, num_bits: int, group_size: int,
- act_order: bool):
- orig_device = w.device
- size_k, size_n = w.shape
- assert w.is_floating_point(), "w must be float"
- assert num_bits in SUPPORTED_NUM_BITS, f"Unsupported num_bits = {num_bits}"
- assert group_size in SUPPORTED_GROUP_SIZES + [
- size_k
- ], f"Unsupported groupsize = {group_size}"
- if group_size == -1:
- group_size = size_k
- assert group_size <= size_k
- max_q_val = 2**num_bits - 1
- half_q_val = (max_q_val + 1) // 2
- # Reshape to [groupsize, -1]
- if group_size < size_k:
- w = w.reshape((-1, group_size, size_n))
- w = w.permute(1, 0, 2)
- w = w.reshape((group_size, -1))
- # Compute scale for each group
- s = torch.max(torch.abs(w), 0, keepdim=True)[0]
- s *= 2 / max_q_val # 2 => symmetric
- # Quantize
- q_w = torch.round(w / s).int()
- q_w += half_q_val
- q_w = torch.clamp(q_w, 0, max_q_val)
- # Compute ref (dequantized)
- w_ref = (q_w - half_q_val).half() * s
- # Restore original shapes
- if group_size < size_k:
- def reshape_w(w):
- w = w.reshape((group_size, -1, size_n))
- w = w.permute(1, 0, 2)
- w = w.reshape((size_k, size_n)).contiguous()
- return w
- q_w = reshape_w(q_w)
- w_ref = reshape_w(w_ref)
- s = s.reshape((-1, size_n)).contiguous()
- # Apply act_order
- g_idx = torch.empty(0, dtype=torch.int, device=w.device)
- rand_perm = torch.empty(0, dtype=torch.int, device=w.device)
- if act_order:
- assert (
- group_size < size_k
- ), "For act_order, groupsize = {} must be less than size_k = {}".format(
- group_size, size_k)
- w_ref, q_w, g_idx, rand_perm = permute_rows(q_w, w_ref, group_size)
- return (
- w_ref.to(device=orig_device),
- q_w.to(device=orig_device),
- s.to(device=orig_device),
- g_idx.to(device=orig_device),
- rand_perm.to(device=orig_device),
- )
- def sort_weights(q_w: torch.Tensor, g_idx: torch.Tensor):
- orig_device = q_w.device
- sort_indices = torch.argsort(g_idx).to(
- dtype=torch.int32) # Sort based on g_idx
- g_idx = g_idx[sort_indices].contiguous()
- q_w = q_w[sort_indices, :].contiguous()
- return (
- q_w.to(device=orig_device),
- g_idx.to(device=orig_device),
- sort_indices.to(device=orig_device),
- )
- def gptq_pack(
- q_w: torch.Tensor,
- num_bits: int,
- size_k: int,
- size_n: int,
- ):
- assert q_w.shape == (size_k, size_n)
- pack_factor = get_pack_factor(num_bits)
- assert size_k % pack_factor == 0
- orig_device = q_w.device
- q_w = q_w.cpu().numpy().astype(numpy.uint32)
- q_res = numpy.zeros((size_k // pack_factor, size_n), dtype=numpy.uint32)
- for i in range(pack_factor):
- q_res |= q_w[i::pack_factor, :] << num_bits * i
- q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
- return q_res
|