gpu_executor.py 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. from typing import Any, Dict, List, Optional, Set, Tuple, Union
  2. from loguru import logger
  3. from aphrodite.common.sequence import (ExecuteModelRequest, PoolerOutput,
  4. SamplerOutput)
  5. from aphrodite.common.utils import (get_distributed_init_method, get_ip,
  6. get_open_port, make_async)
  7. from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase
  8. from aphrodite.lora.request import LoRARequest
  9. from aphrodite.prompt_adapter.request import PromptAdapterRequest
  10. from aphrodite.task_handler.worker_base import WorkerWrapperBase
  11. class GPUExecutor(ExecutorBase):
  12. def _init_executor(self) -> None:
  13. """Initialize the worker and load the model.
  14. """
  15. assert self.parallel_config.world_size == 1, (
  16. "GPUExecutor only supports single GPU.")
  17. self.driver_worker = self._create_worker()
  18. self.driver_worker.init_device()
  19. self.driver_worker.load_model()
  20. def _get_worker_kwargs(
  21. self,
  22. local_rank: int = 0,
  23. rank: int = 0,
  24. distributed_init_method: Optional[str] = None) -> Dict[str, Any]:
  25. """Return worker init args for a given rank."""
  26. if distributed_init_method is None:
  27. distributed_init_method = get_distributed_init_method(
  28. get_ip(), get_open_port())
  29. return dict(
  30. model_config=self.model_config,
  31. parallel_config=self.parallel_config,
  32. scheduler_config=self.scheduler_config,
  33. device_config=self.device_config,
  34. cache_config=self.cache_config,
  35. load_config=self.load_config,
  36. local_rank=local_rank,
  37. rank=rank,
  38. distributed_init_method=distributed_init_method,
  39. lora_config=self.lora_config,
  40. multimodal_config=self.multimodal_config,
  41. speculative_config=self.speculative_config,
  42. prompt_adapter_config=self.prompt_adapter_config,
  43. is_driver_worker=(not self.parallel_config)
  44. or (rank % self.parallel_config.tensor_parallel_size == 0),
  45. )
  46. def _create_worker(self,
  47. local_rank: int = 0,
  48. rank: int = 0,
  49. distributed_init_method: Optional[str] = None):
  50. if self.speculative_config is None:
  51. worker_module_name = "aphrodite.task_handler.worker"
  52. worker_class_name = "Worker"
  53. else:
  54. worker_module_name = "aphrodite.spec_decode.spec_decode_worker"
  55. worker_class_name = "create_spec_worker"
  56. wrapper = WorkerWrapperBase(
  57. worker_module_name=worker_module_name,
  58. worker_class_name=worker_class_name,
  59. )
  60. wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
  61. distributed_init_method))
  62. return wrapper.worker
  63. def determine_num_available_blocks(self) -> Tuple[int, int]:
  64. """Determine the number of available KV blocks by invoking the
  65. underlying worker.
  66. """
  67. return self.driver_worker.determine_num_available_blocks()
  68. def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks) -> None:
  69. """Initialize the KV cache by invoking the underlying worker.
  70. """
  71. # NOTE: This is logged in the executor because there can be >1 worker
  72. # with other executors. We could log in the engine level, but work
  73. # remains to abstract away the device for non-GPU configurations.
  74. logger.info(f"# GPU blocks: {num_gpu_blocks}, "
  75. f"# CPU blocks: {num_cpu_blocks}")
  76. logger.info(
  77. f"Minimum concurrency: {num_gpu_blocks * self.cache_config.block_size / self.scheduler_config.max_model_len:.2f}x" # noqa: E501
  78. )
  79. self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
  80. def execute_model(
  81. self, execute_model_req: ExecuteModelRequest
  82. ) -> Optional[List[Union[SamplerOutput, PoolerOutput]]]:
  83. output = self.driver_worker.execute_model(execute_model_req)
  84. return output
  85. def add_lora(self, lora_request: LoRARequest) -> bool:
  86. assert lora_request.lora_int_id > 0, "lora_id must be greater than 0."
  87. return self.driver_worker.add_lora(lora_request)
  88. def remove_lora(self, lora_id: int) -> bool:
  89. assert lora_id > 0, "lora_id must be greater than 0."
  90. return self.driver_worker.remove_lora(lora_id)
  91. def list_loras(self) -> Set[int]:
  92. return self.driver_worker.list_loras()
  93. def pin_lora(self, lora_id: int) -> bool:
  94. assert lora_id > 0, "lora_id must be greater than 0."
  95. return self.driver_worker.pin_lora(lora_id)
  96. def add_prompt_adapter(
  97. self, prompt_adapter_request: PromptAdapterRequest) -> bool:
  98. assert prompt_adapter_request.prompt_adapter_id > 0, \
  99. "prompt_adapter_id must be greater than 0."
  100. return self.driver_worker.add_prompt_adapter(prompt_adapter_request)
  101. def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
  102. assert prompt_adapter_id > 0, \
  103. "prompt_adapter_id must be greater than 0."
  104. return self.driver_worker.remove_prompt_adapter(prompt_adapter_id)
  105. def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
  106. assert prompt_adapter_id > 0, \
  107. "prompt_adapter_id must be greater than 0."
  108. return self.driver_worker.pin_prompt_adapter(prompt_adapter_id)
  109. def list_prompt_adapters(self) -> Set[int]:
  110. return self.driver_worker.list_prompt_adapters()
  111. def check_health(self) -> None:
  112. # GPUExecutor will always be healthy as long as
  113. # it's running.
  114. return
  115. class GPUExecutorAsync(GPUExecutor, ExecutorAsyncBase):
  116. async def execute_model_async(
  117. self,
  118. execute_model_req: ExecuteModelRequest,
  119. ) -> List[Union[SamplerOutput, PoolerOutput]]:
  120. output = await make_async(self.driver_worker.execute_model
  121. )(execute_model_req=execute_model_req, )
  122. return output