123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023 |
- import asyncio
- import time
- import weakref
- from functools import partial
- from typing import (Any, AsyncGenerator, Callable, Dict, Iterable, List,
- Optional, Set, Tuple, Type, Union)
- from weakref import ReferenceType
- from loguru import logger
- import aphrodite.common.envs as envs
- from aphrodite.common.config import (DecodingConfig, EngineConfig, LoRAConfig,
- ModelConfig, ParallelConfig,
- SchedulerConfig)
- from aphrodite.common.outputs import EmbeddingRequestOutput, RequestOutput
- from aphrodite.common.pooling_params import PoolingParams
- from aphrodite.common.sampling_params import SamplingParams
- from aphrodite.common.sequence import ExecuteModelRequest
- from aphrodite.common.utils import weak_bind
- from aphrodite.engine.aphrodite_engine import (AphroditeEngine,
- SchedulerOutputState)
- from aphrodite.engine.args_tools import AsyncEngineArgs
- from aphrodite.engine.async_timeout import asyncio_timeout
- from aphrodite.engine.metrics_types import StatLoggerBase
- from aphrodite.executor.executor_base import ExecutorAsyncBase
- from aphrodite.executor.ray_utils import initialize_ray_cluster
- from aphrodite.inputs import PromptInputs
- from aphrodite.lora.request import LoRARequest
- from aphrodite.modeling.layers.sampler import SamplerOutput
- from aphrodite.processing.scheduler import SchedulerOutputs
- from aphrodite.prompt_adapter.request import PromptAdapterRequest
- from aphrodite.transformers_utils.tokenizer import AnyTokenizer
- ENGINE_ITERATION_TIMEOUT_S = envs.APHRODITE_ENGINE_ITERATION_TIMEOUT_S
- class AsyncEngineDeadError(RuntimeError):
- pass
- def _log_task_completion(task: asyncio.Task,
- error_callback: Callable[[Exception], None]) -> None:
- """This function is only intended for the `engine.run_engine_loop()` task.
- In particular, that task runs a `while True` loop that can only exit if
- there is an exception.
- """
- exception = None
- try:
- return_value = task.result()
- raise AssertionError(
- f"The engine background task should never finish without an "
- f"exception. {return_value}")
- except asyncio.exceptions.CancelledError:
- # We assume that if the task is cancelled, we are gracefully shutting
- # down. This should only happen on program exit.
- logger.info("Engine is gracefully shutting down.")
- except Exception as e:
- exception = e
- logger.error("Engine background task failed", exc_info=e)
- error_callback(exception)
- raise AsyncEngineDeadError(
- "Task finished unexpectedly. This should never happen! "
- "Please open an issue on Github. See stack trace above for the "
- "actual cause.") from e
- STOP_ITERATION = Exception() # Sentinel
- class AsyncStream:
- """A stream of RequestOutputs or EmbeddingRequestOutputs for a request
- that can be iterated over asynchronously via an async generator."""
- def __init__(self, request_id: str, cancel: Callable[[str], None]) -> None:
- self.request_id = request_id
- self._cancel = cancel
- self._queue: asyncio.Queue = asyncio.Queue()
- self._finished = False
- def put(self, item: Union[RequestOutput, EmbeddingRequestOutput,
- Exception]) -> None:
- if not self._finished:
- self._queue.put_nowait(item)
- def finish(
- self,
- exception: Optional[Union[BaseException, Type[BaseException]]] = None,
- ) -> None:
- if not self._finished:
- self._finished = True
- self._queue.put_nowait(
- exception if self._is_raisable(exception) else STOP_ITERATION)
- @property
- def finished(self) -> bool:
- return self._finished
- async def generator(
- self
- ) -> AsyncGenerator[Union[RequestOutput, EmbeddingRequestOutput], None]:
- try:
- while True:
- result = await self._queue.get()
- if self._is_raisable(result):
- if result == STOP_ITERATION:
- return
- raise result
- yield result
- except GeneratorExit:
- self._cancel(self.request_id)
- raise asyncio.CancelledError from None
- @staticmethod
- def _is_raisable(value: Any):
- return isinstance(value, BaseException) or \
- (isinstance(value, type) and \
- issubclass(value, BaseException))
- class RequestTracker:
- """Synchronous abstraction for tracking requests."""
- def __init__(self) -> None:
- self._request_streams: Dict[str, AsyncStream] = {}
- self._aborted_requests: asyncio.Queue[str] = asyncio.Queue()
- self._new_requests: asyncio.Queue[Tuple[AsyncStream,
- dict]] = asyncio.Queue()
- self.new_requests_event = asyncio.Event()
- def __contains__(self, item):
- return item in self._request_streams
- def __len__(self) -> int:
- return len(self._request_streams)
- def propagate_exception(self,
- exc: Exception,
- request_id: Optional[str] = None) -> None:
- """Propagate an exception to request streams
- (all if request_id is None)."""
- if request_id is not None:
- self.abort_request(request_id, exception=exc)
- else:
- # NB: tuple() used here because self.abort_request pops the stream
- # out of self._request_streams, so we can't iterate on it directly
- for rid in tuple(self._request_streams.keys()):
- self.abort_request(rid, exception=exc)
- def process_request_output(self,
- request_output: Union[RequestOutput,
- EmbeddingRequestOutput],
- *,
- verbose: bool = False) -> None:
- """Process a request output from the engine."""
- request_id = request_output.request_id
- finished = request_output.finished
- if finished:
- stream = self._request_streams.pop(request_id, None)
- else:
- stream = self._request_streams.get(request_id)
- # Guard against a KeyError which can occur if the request was aborted
- # while the output was generated
- if stream is not None:
- stream.put(request_output)
- if finished:
- stream.finish()
- if verbose and finished:
- logger.info(f"Finished request {request_id}.")
- def process_exception(self,
- request_id: str,
- exception: BaseException,
- *,
- verbose: bool = False) -> None:
- """Propagate an exception from the engine."""
- if verbose:
- logger.info(f"Finished request {request_id}.")
- self.abort_request(request_id, exception=exception)
- def add_request(self,
- request_id: str,
- *,
- verbose: bool = False,
- **engine_add_request_kwargs) -> AsyncStream:
- """Add a request to be sent to the engine on the next background
- loop iteration."""
- if request_id in self._request_streams:
- raise KeyError(f"Request {request_id} already exists.")
- abort_request = partial(self.abort_request, verbose=verbose)
- stream = AsyncStream(request_id, abort_request)
- self._new_requests.put_nowait((stream, {
- "request_id": request_id,
- **engine_add_request_kwargs
- }))
- self.new_requests_event.set()
- if verbose:
- logger.info(f"Added request {request_id}.")
- return stream
- def abort_request(self,
- request_id: str,
- *,
- exception: Optional[Union[BaseException,
- Type[BaseException]]] = None,
- verbose: bool = False) -> None:
- """Abort a request during next background loop iteration."""
- if verbose:
- logger.info(f"Aborted request {request_id}.")
- self._aborted_requests.put_nowait(request_id)
- stream = self._request_streams.pop(request_id, None)
- if stream is not None:
- stream.finish(exception=exception)
- def get_new_and_aborted_requests(self) -> Tuple[List[Dict], Set[str]]:
- """Get the new requests and finished requests to be
- sent to the engine."""
- new_requests: List[Dict] = []
- finished_requests: Set[str] = set()
- while not self._aborted_requests.empty():
- request_id = self._aborted_requests.get_nowait()
- finished_requests.add(request_id)
- while not self._new_requests.empty():
- stream, new_request = self._new_requests.get_nowait()
- request_id = stream.request_id
- if request_id in finished_requests:
- # The request has already been aborted.
- stream.finish(asyncio.CancelledError)
- finished_requests.discard(request_id)
- else:
- self._request_streams[request_id] = stream
- new_requests.append(new_request)
- return new_requests, finished_requests
- async def wait_for_new_requests(self):
- if not self.has_new_requests():
- await self.new_requests_event.wait()
- self.new_requests_event.clear()
- def has_new_requests(self):
- return not self._new_requests.empty()
- class _AsyncAphrodite(AphroditeEngine):
- """Extension of AphroditeEngine to add async methods."""
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- async def step_async(
- self, virtual_engine: int
- ) -> List[Union[RequestOutput, EmbeddingRequestOutput]]:
- """Performs one decoding iteration and returns newly generated results.
- The workers are ran asynchronously if possible.
- This function performs one decoding iteration of the engine. It first
- schedules the sequences to be executed in the next iteration and the
- token blocks to be swapped in/out/copy. Then, it executes the model
- and updates the scheduler with the model outputs. Finally, it decodes
- the sequences and returns the newly generated results.
- """
- # these are cached outputs from previous iterations. None if on first
- # iteration
- cached_outputs = self.cached_scheduler_outputs[virtual_engine]
- seq_group_metadata_list = cached_outputs.seq_group_metadata_list
- scheduler_outputs = cached_outputs.scheduler_outputs
- allow_async_output_proc = cached_outputs.allow_async_output_proc
- ctx = self.scheduler_contexts[virtual_engine]
- # Clear outputs for each new scheduler iteration
- ctx.request_outputs.clear()
- # skip the scheduler if there are any remaining steps in the seq groups.
- # This ensures that the scheduler is only called again when the current
- # batch has completed.
- if not self._has_remaining_steps(seq_group_metadata_list):
- # Schedule iteration
- (seq_group_metadata_list, scheduler_outputs,
- allow_async_output_proc
- ) = self.scheduler[virtual_engine].schedule()
- ctx.seq_group_metadata_list = seq_group_metadata_list
- ctx.scheduler_outputs = scheduler_outputs
- # Maybe switch from async mode to sync mode
- if not allow_async_output_proc and len(ctx.output_queue) > 0:
- self._process_model_outputs(ctx=ctx)
- if (self.scheduler_config.is_multi_step
- and scheduler_outputs.num_lookahead_slots > 0):
- # cache the scheduler outputs for the next iteration if we have
- # lookahead slots
- self._cache_scheduler_outputs_for_multi_step(
- virtual_engine, seq_group_metadata_list, scheduler_outputs,
- allow_async_output_proc)
- assert seq_group_metadata_list is not None
- assert scheduler_outputs is not None
- if not scheduler_outputs.is_empty():
- finished_requests_ids = self.scheduler[
- virtual_engine].get_and_reset_finished_requests_ids()
- # Check if we have a cached last_output from the previous iteration.
- # For supporting PP this is probably the best way to pass the
- # sampled_token_ids, as a separate broadcast over all the PP stages
- # will cause one virtual engine's microbatch to block the pipeline.
- last_sampled_token_ids = \
- self._get_last_sampled_token_ids(virtual_engine)
- execute_model_req = ExecuteModelRequest(
- seq_group_metadata_list=seq_group_metadata_list,
- blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
- blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
- blocks_to_copy=scheduler_outputs.blocks_to_copy,
- virtual_engine=virtual_engine,
- num_lookahead_slots=scheduler_outputs.num_lookahead_slots,
- running_queue_size=scheduler_outputs.running_queue_size,
- finished_requests_ids=finished_requests_ids,
- # We use ExecuteModelRequest to pass the last sampled_token_ids
- # to each of the non-last PP stages for in-place prepare_input.
- last_sampled_token_ids=last_sampled_token_ids)
- if allow_async_output_proc:
- execute_model_req.async_callback = self.async_callbacks[
- virtual_engine]
- # Execute the model.
- outputs = await self.model_executor.execute_model_async(
- execute_model_req)
- # we need to do this here so that last step's sampled_token_ids can
- # be passed to the next iteration for PP.
- if self.scheduler_config.is_multi_step:
- self._update_cached_scheduler_output(virtual_engine, outputs)
- else:
- if len(ctx.output_queue) > 0:
- self._process_model_outputs(ctx=ctx)
- outputs = []
- # Finish the current step for all the sequence groups.
- if self.scheduler_config.is_multi_step:
- for seq_group in seq_group_metadata_list:
- seq_group.finish_step()
- if not self._has_remaining_steps(seq_group_metadata_list):
- # Clear the cache if we have finished all the steps
- if self.scheduler_config.is_multi_step:
- self.cached_scheduler_outputs[
- virtual_engine] = SchedulerOutputState()
- ctx.append_output(outputs=outputs,
- seq_group_metadata_list=seq_group_metadata_list,
- scheduler_outputs=scheduler_outputs,
- is_async=allow_async_output_proc,
- is_last_step=True)
- if outputs and allow_async_output_proc:
- assert len(
- outputs
- ) == 1, "Async postprocessor expects only a single output set"
- self._advance_to_next_step(
- outputs[0], seq_group_metadata_list,
- scheduler_outputs.scheduled_seq_groups)
- if not allow_async_output_proc:
- self._process_model_outputs(ctx=ctx)
- # Log stats.
- self.do_log_stats(scheduler_outputs, outputs)
- else:
- # Multi-step case
- return ctx.request_outputs
- if not self.has_unfinished_requests():
- # Drain async postprocessor (if exists)
- if len(ctx.output_queue) > 0:
- self._process_model_outputs(ctx=ctx)
- assert len(ctx.output_queue) == 0
- return ctx.request_outputs
- async def stop_remote_worker_execution_loop_async(self) -> None:
- """Stop the remote worker execution loop."""
- await self.model_executor.stop_remote_worker_execution_loop_async()
- async def add_request_async(
- self,
- request_id: str,
- inputs: PromptInputs,
- params: Union[SamplingParams, PoolingParams],
- arrival_time: Optional[float] = None,
- lora_request: Optional[LoRARequest] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None,
- ) -> None:
- """Async version of :meth:`add_request`."""
- if lora_request is not None and not self.lora_config:
- raise ValueError(f"Got lora_request {lora_request} but LoRA is "
- "not enabled!")
- if arrival_time is None:
- arrival_time = time.time()
- preprocessed_inputs = await self.input_preprocessor.preprocess_async(
- inputs,
- request_id=request_id,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- )
- processed_inputs = self.input_processor(preprocessed_inputs)
- self._add_processed_request(
- request_id=request_id,
- processed_inputs=processed_inputs,
- params=params,
- arrival_time=arrival_time,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- )
- async def check_health_async(self) -> None:
- if self.tokenizer:
- self.tokenizer.check_health()
- self.model_executor.check_health()
- class AsyncAphrodite:
- """An asynchronous wrapper for :class:`AphroditeEngine`.
- This class is used to wrap the :class:`AphroditeEngine` class to make it
- asynchronous. It uses asyncio to create a background loop that keeps
- processing incoming requests. The :class:`AphroditeEngine` is kicked by the
- generate method when there are requests in the waiting queue. The generate
- method yields the outputs from the :class:`AphroditeEngine` to the caller.
- Args:.
- log_requests: Whether to log the requests.
- start_engine_loop: If True, the background task to run the engine
- will be automatically started in the generate call.
- *args: Arguments for :class:`AphroditeEngine`.
- **kwargs: Arguments for :class:`AphroditeEngine`.
- """
- _engine_class: Type[_AsyncAphrodite] = _AsyncAphrodite
- def __init__(self,
- *args,
- log_requests: bool = True,
- start_engine_loop: bool = True,
- **kwargs) -> None:
- self.log_requests = log_requests
- self.engine = self._engine_class(*args, **kwargs)
- # This ensures quick processing of request outputs
- # so the append to asyncio queues is not delayed,
- # especially for multi-step.
- self.use_process_request_outputs_callback = (
- self.engine.model_config.use_async_output_proc)
- if self.use_process_request_outputs_callback:
- self.engine.process_request_outputs_callback = \
- weak_bind(self.process_request_outputs)
- self.background_loop: Optional[asyncio.Future] = None
- # We need to keep a reference to unshielded
- # task as well to prevent it from being garbage
- # collected
- self._background_loop_unshielded: Optional[asyncio.Task] = None
- self.start_engine_loop = start_engine_loop
- self._errored_with: Optional[BaseException] = None
- # Lazy initialized fields
- self._request_tracker: RequestTracker
- def __del__(self):
- if rt := getattr(self, "request_tracker", None):
- # Wake up engine loop so that it will exit cleanly
- rt.new_requests_event.set()
- @classmethod
- def _get_executor_cls(
- cls, engine_config: EngineConfig) -> Type[ExecutorAsyncBase]:
- distributed_executor_backend = (
- engine_config.parallel_config.distributed_executor_backend)
- if isinstance(distributed_executor_backend, type):
- if not issubclass(distributed_executor_backend, ExecutorAsyncBase):
- raise TypeError(
- "distributed_executor_backend must be a subclass of "
- f"ExecutorAsyncBase. Got {distributed_executor_backend}.")
- executor_class = distributed_executor_backend
- elif engine_config.device_config.device_type == "neuron":
- from aphrodite.executor.neuron_executor import NeuronExecutorAsync
- executor_class = NeuronExecutorAsync
- elif engine_config.device_config.device_type == "tpu":
- if distributed_executor_backend == "ray":
- from aphrodite.executor.ray_tpu_executor import (
- RayTPUExecutorAsync)
- executor_class = RayTPUExecutorAsync
- else:
- assert distributed_executor_backend is None
- from aphrodite.executor.tpu_executor import TPUExecutorAsync
- executor_class = TPUExecutorAsync
- elif engine_config.device_config.device_type == "cpu":
- from aphrodite.executor.cpu_executor import CPUExecutorAsync
- executor_class = CPUExecutorAsync
- elif engine_config.device_config.device_type == "openvino":
- assert distributed_executor_backend is None, (
- "Distributed execution is not supported with "
- "the OpenVINO backend.")
- from aphrodite.executor.openvino_executor import (
- OpenVINOExecutorAsync)
- executor_class = OpenVINOExecutorAsync
- elif engine_config.device_config.device_type == "xpu":
- if distributed_executor_backend is None:
- from aphrodite.executor.xpu_executor import XPUExecutorAsync
- executor_class = XPUExecutorAsync
- elif distributed_executor_backend == "ray":
- from aphrodite.executor.ray_xpu_executor import (
- RayXPUExecutorAsync)
- executor_class = RayXPUExecutorAsync
- elif distributed_executor_backend == "mp":
- from aphrodite.executor.multiproc_xpu_executor import (
- MultiprocessingXPUExecutorAsync)
- executor_class = MultiprocessingXPUExecutorAsync
- else:
- raise RuntimeError(
- "Not supported distributed execution model on XPU device.")
- elif distributed_executor_backend == "ray":
- from aphrodite.executor.ray_gpu_executor import RayGPUExecutorAsync
- executor_class = RayGPUExecutorAsync
- elif distributed_executor_backend == "mp":
- from aphrodite.executor.multiproc_gpu_executor import (
- MultiprocessingGPUExecutorAsync)
- executor_class = MultiprocessingGPUExecutorAsync
- else:
- from aphrodite.executor.gpu_executor import GPUExecutorAsync
- executor_class = GPUExecutorAsync
- return executor_class
- @classmethod
- def from_engine_args(
- cls,
- engine_args: AsyncEngineArgs,
- engine_config: Optional[EngineConfig] = None,
- start_engine_loop: bool = True,
- stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
- ) -> "AsyncAphrodite":
- """Creates an async LLM engine from the engine arguments."""
- # Create the engine configs.
- if engine_config is None:
- engine_config = engine_args.create_engine_config()
- executor_class = cls._get_executor_cls(engine_config)
- if executor_class.uses_ray:
- initialize_ray_cluster(engine_config.parallel_config)
- # Create the async LLM engine.
- engine = cls(
- **engine_config.to_dict(),
- executor_class=executor_class,
- log_requests=not engine_args.disable_log_requests,
- log_stats=not engine_args.disable_log_stats,
- start_engine_loop=start_engine_loop,
- stat_loggers=stat_loggers,
- )
- return engine
- @property
- def is_running(self) -> bool:
- return (self.background_loop is not None
- and self._background_loop_unshielded is not None
- and not self._background_loop_unshielded.done())
- @property
- def is_stopped(self) -> bool:
- return self.errored or (self.background_loop is not None and
- self._background_loop_unshielded is not None
- and self._background_loop_unshielded.done())
- @property
- def errored(self) -> bool:
- return self._errored_with is not None
- @property
- def dead_error(self) -> BaseException:
- return AsyncEngineDeadError(
- "Background loop is not running. If it was running, "
- "inspect the output to find the stacktrace of the "
- "error that caused the background loop to stop "
- "(AsyncEngineDeadError).")
- def set_errored(self, exc: Exception) -> None:
- self._errored_with = exc
- def _error_callback(self, exc: Exception) -> None:
- self.set_errored(exc)
- self._request_tracker.propagate_exception(exc)
- async def get_tokenizer(
- self,
- lora_request: Optional[LoRARequest] = None,
- ) -> AnyTokenizer:
- return await (self.engine.get_tokenizer_group().
- get_lora_tokenizer_async(lora_request))
- def start_background_loop(self) -> None:
- """Start the background loop."""
- if self.errored:
- raise AsyncEngineDeadError(
- "Background loop has errored already.") from self._errored_with
- if self.is_running:
- raise RuntimeError("Background loop is already running.")
- # Initialize the RequestTracker here so it uses the right event loop.
- self._request_tracker = RequestTracker()
- self._background_loop_unshielded = asyncio.get_event_loop(
- ).create_task(self.run_engine_loop(weakref.ref(self)))
- self._background_loop_unshielded.add_done_callback(
- partial(_log_task_completion, error_callback=self._error_callback))
- self.background_loop = asyncio.shield(self._background_loop_unshielded)
- def shutdown_background_loop(self) -> None:
- """
- Shut down the background loop.
- This method needs to be called during cleanup to remove
- references to `self` and properly GC the resources held
- by the async LLM engine (e.g., the executors as well as
- their resources).
- """
- if self._background_loop_unshielded is not None:
- self._background_loop_unshielded.cancel()
- self._background_loop_unshielded = None
- self.background_loop = None
- async def engine_step(self, virtual_engine: int) -> bool:
- """Kick the engine to process the waiting requests.
- Returns True if there are in-progress requests."""
- new_requests, aborted_requests = (
- self._request_tracker.get_new_and_aborted_requests())
- for new_request in new_requests:
- # Add the request into the Aphrodite engine's waiting queue.
- try:
- await self.engine.add_request_async(**new_request)
- except ValueError as e:
- # TODO: use an Aphrodite specific error for failed validation
- self._request_tracker.process_exception(
- new_request["request_id"],
- e,
- verbose=self.log_requests,
- )
- if aborted_requests:
- await self._engine_abort(aborted_requests)
- request_outputs = await self.engine.step_async(virtual_engine)
- # Put the outputs into the corresponding streams.
- # If used as a callback, then already invoked inside
- # LLMEngine's _process_model_outputs
- if not self.use_process_request_outputs_callback:
- all_finished = self.process_request_outputs(request_outputs)
- else:
- # For callback case, we only need to detect when all
- # requests are finished
- all_finished = all(request_output.finished
- for request_output in request_outputs)
- return not all_finished
- def process_request_outputs(self, request_outputs) -> bool:
- # Put the outputs into the corresponding streams.
- all_finished = True
- for request_output in request_outputs:
- self._request_tracker.process_request_output(
- request_output, verbose=self.log_requests)
- all_finished = all_finished and request_output.finished
- return all_finished
- async def _engine_abort(self, request_ids: Iterable[str]):
- self.engine.abort_request(request_ids)
- @staticmethod
- async def run_engine_loop(engine_ref: ReferenceType):
- """We use a weakref to the engine so that the running loop
- doesn't prevent the engine being garbage collected."""
- engine: Optional["AsyncAphrodite"] = engine_ref()
- if not engine:
- return
- pipeline_parallel_size = \
- engine.engine.parallel_config.pipeline_parallel_size
- has_requests_in_progress = [False] * pipeline_parallel_size
- while True:
- if not any(has_requests_in_progress):
- logger.debug("Waiting for new requests...")
- # Stop the execute model loop in parallel workers until there
- # are more requests to process. This avoids waiting
- # indefinitely in torch.distributed ops which may otherwise
- # timeout, and unblocks the RPC thread in the workers so that
- # they can process any other queued control plane messages,
- # such as add/remove lora adapters.
- await engine.engine.stop_remote_worker_execution_loop_async()
- request_tracker = engine._request_tracker
- # Allow engine to be garbage collected while
- # waiting for new requests
- del engine
- await asyncio.sleep(0)
- if engine_ref() is None:
- return
- await request_tracker.wait_for_new_requests()
- engine = engine_ref()
- if not engine:
- return
- logger.debug("Got new requests!")
- requests_in_progress = [
- asyncio.create_task(engine.engine_step(ve))
- for ve in range(pipeline_parallel_size)
- ]
- has_requests_in_progress = [True] * pipeline_parallel_size
- # Abort if iteration takes too long due to unrecoverable errors
- # (eg. NCCL timeouts).
- try:
- async with asyncio_timeout(ENGINE_ITERATION_TIMEOUT_S):
- done, _ = await asyncio.wait(
- requests_in_progress,
- return_when=asyncio.FIRST_COMPLETED)
- for _ in range(pipeline_parallel_size):
- await asyncio.sleep(0)
- for task in done:
- result = task.result()
- virtual_engine = requests_in_progress.index(task)
- has_unfinished_requests = (
- engine.engine.
- has_unfinished_requests_for_virtual_engine(
- virtual_engine))
- if result or has_unfinished_requests:
- requests_in_progress[virtual_engine] = (
- asyncio.create_task(
- engine.engine_step(virtual_engine)))
- has_requests_in_progress[virtual_engine] = True
- else:
- has_requests_in_progress[virtual_engine] = False
- except asyncio.TimeoutError as exc:
- logger.error(
- "Engine iteration timed out. This should never happen!")
- engine.set_errored(exc)
- raise
- await asyncio.sleep(0)
- # This method does not need to be async, but kept that way
- # for backwards compatibility.
- async def add_request(
- self,
- request_id: str,
- inputs: PromptInputs,
- params: Union[SamplingParams, PoolingParams],
- arrival_time: Optional[float] = None,
- lora_request: Optional[LoRARequest] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None
- ) -> AsyncGenerator[Union[RequestOutput, EmbeddingRequestOutput], None]:
- if not self.is_running:
- if self.start_engine_loop:
- self.start_background_loop()
- else:
- raise AsyncEngineDeadError(
- "Background loop is not running. If it was running, "
- "inspect the output to find the stacktrace of the "
- "error that caused the background loop to stop "
- "(AsyncEngineDeadError).")
- stream = self._request_tracker.add_request(
- request_id,
- verbose=self.log_requests,
- inputs=inputs,
- params=params,
- arrival_time=arrival_time or time.time(),
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request)
- return stream.generator()
- async def generate(
- self,
- inputs: PromptInputs,
- sampling_params: SamplingParams,
- request_id: str,
- lora_request: Optional[LoRARequest] = None,
- prompt_adapter_request: Optional[PromptAdapterRequest] = None
- ) -> AsyncGenerator[RequestOutput, None]:
- """Generate outputs for a request.
- Generate outputs for a request. This method is a coroutine. It adds the
- request into the waiting queue of the AphroditeEngine and streams the
- outputs from the AphroditeEngine to the caller.
- Args:
- inputs: The inputs to the LLM. See
- :class:`~aphrodite.inputs.PromptInputs`
- for more details about the format of each input.
- sampling_params: The sampling parameters of the request.
- request_id: The unique id of the request.
- lora_request: LoRA request to use for generation, if any.
- prompt_adapter_request: Prompt Adapter request to use
- for generation, if any.
- Yields:
- The output `RequestOutput` objects from the AphroditeEngine
- for the request.
- Details:
- - If the engine is not running, start the background loop,
- which iteratively invokes
- # pylint: disable=line-too-long
- :meth:`~aphrodite.engine.async_aphrodite.AsyncAphrodite.engine_step`
- to process the waiting requests.
- - Add the request to the engine's `RequestTracker`.
- On the next background loop, this request will be sent to
- the underlying engine.
- Also, a corresponding `AsyncStream` will be created.
- - Wait for the request outputs from `AsyncStream` and yield them.
- Example:
- >>> # Please refer to entrypoints/api_server.py for
- >>> # the complete example.
- >>>
- >>> # initialize the engine and the example input
- >>> engine = AsyncAphrodite.from_engine_args(engine_args)
- >>> example_input = {
- >>> "prompt": "What is LLM?",
- >>> "stream": False, # assume the non-streaming case
- >>> "temperature": 0.0,
- >>> "request_id": 0,
- >>> }
- >>>
- >>> # start the generation
- >>> results_generator = engine.generate(
- >>> example_input["prompt"],
- >>> SamplingParams(temperature=example_input["temperature"]),
- >>> example_input["request_id"])
- >>>
- >>> # get the results
- >>> final_output = None
- >>> async for request_output in results_generator:
- >>> if await request.is_disconnected():
- >>> # Abort the request if the client disconnects.
- >>> await engine.abort(request_id)
- >>> # Return or raise an error
- >>> ...
- >>> final_output = request_output
- >>>
- >>> # Process and return the final output
- >>> ...
- """
- async for output in await self.add_request(
- request_id,
- inputs,
- sampling_params,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- ):
- yield AphroditeEngine.validate_output(output, RequestOutput)
- async def encode(
- self,
- inputs: PromptInputs,
- pooling_params: PoolingParams,
- request_id: str,
- lora_request: Optional[LoRARequest] = None,
- ) -> AsyncGenerator[EmbeddingRequestOutput, None]:
- """Generate outputs for a request from an embedding model.
- Generate outputs for a request. This method is a coroutine. It adds the
- request into the waiting queue of the AphroditeEngine and streams the
- outputs from the AphroditeEngine to the caller.
- Args:
- inputs: The inputs to the LLM. See
- :class:`~aphrodite.inputs.PromptInputs`
- for more details about the format of each input.
- pooling_params: The pooling parameters of the request.
- request_id: The unique id of the request.
- lora_request: LoRA request to use for generation, if any.
- Yields:
- The output `EmbeddingRequestOutput` objects from the AphroditeEngine
- for the request.
- Details:
- - If the engine is not running, start the background loop,
- which iteratively invokes
- :meth:`~aphrodite.engine.async_aphrodite.AsyncAphrodite.engine_step`
- to process the waiting requests.
- - Add the request to the engine's `RequestTracker`.
- On the next background loop, this request will be sent to
- the underlying engine.
- Also, a corresponding `AsyncStream` will be created.
- - Wait for the request outputs from `AsyncStream` and yield them.
- Example:
- >>> # Please refer to endpoints/api_server.py for
- >>> # the complete example.
- >>>
- >>> # initialize the engine and the example input
- >>> engine = AsyncAphrodite.from_engine_args(engine_args)
- >>> example_input = {
- >>> "input": "What is LLM?",
- >>> "request_id": 0,
- >>> }
- >>>
- >>> # start the generation
- >>> results_generator = engine.encode(
- >>> example_input["input"],
- >>> PoolingParams(),
- >>> example_input["request_id"])
- >>>
- >>> # get the results
- >>> final_output = None
- >>> async for request_output in results_generator:
- >>> if await request.is_disconnected():
- >>> # Abort the request if the client disconnects.
- >>> await engine.abort(request_id)
- >>> # Return or raise an error
- >>> ...
- >>> final_output = request_output
- >>>
- >>> # Process and return the final output
- >>> ...
- """
- async for output in await self.add_request(
- request_id,
- inputs,
- pooling_params,
- lora_request=lora_request,
- ):
- yield AphroditeEngine.validate_output(output,
- EmbeddingRequestOutput)
- async def abort(self, request_id: str) -> None:
- """Abort a request.
- Abort a submitted request. If the request is finished or not found,
- this method will be a no-op.
- Args:
- request_id: The unique id of the request.
- """
- if not self.is_running:
- raise AsyncEngineDeadError(
- "Background loop is not running. If it was running, "
- "inspect the output to find the stacktrace of the "
- "error that caused the background loop to stop "
- "(AsyncEngineDeadError).")
- return self._abort(request_id)
- def _abort(self, request_id: str) -> None:
- """Abort a request.
- Abort a submitted request. If the request is finished or not found,
- this method will be a no-op.
- Args:
- request_id: The unique id of the request.
- """
- self._request_tracker.abort_request(request_id,
- exception=asyncio.CancelledError,
- verbose=self.log_requests)
- async def get_model_config(self) -> ModelConfig:
- """Get the model configuration of the Aphrodite engine."""
- return self.engine.get_model_config()
- async def get_parallel_config(self) -> ParallelConfig:
- """Get the parallel configuration of the Aphrodite engine."""
- return self.engine.get_parallel_config()
- async def get_decoding_config(self) -> DecodingConfig:
- """Get the decoding configuration of the Aphrodite engine."""
- return self.engine.get_decoding_config()
- async def get_scheduler_config(self) -> SchedulerConfig:
- """Get the scheduling configuration of the Aphrodite engine."""
- return self.engine.get_scheduler_config()
- async def get_lora_config(self) -> LoRAConfig:
- """Get the lora configuration of the Aphrodite engine."""
- return self.engine.get_lora_config()
- async def do_log_stats(
- self,
- scheduler_outputs: Optional[SchedulerOutputs] = None,
- model_output: Optional[List[SamplerOutput]] = None) -> None:
- self.engine.do_log_stats()
- async def check_health(self) -> None:
- """Raises an error if engine is unhealthy."""
- t = time.perf_counter()
- logger.debug("Starting health check...")
- if self.is_stopped:
- raise AsyncEngineDeadError("Background loop is stopped.")
- await self.engine.check_health_async()
- logger.debug(f"Health check took {time.perf_counter() - t}s")
- def add_logger(self, logger_name: str, logger: StatLoggerBase) -> None:
- self.engine.add_logger(logger_name=logger_name, logger=logger)
- def remove_logger(self, logger_name: str) -> None:
- self.engine.remove_logger(logger_name=logger_name)
|