import functools import os import signal import subprocess import sys import time import warnings from contextlib import contextmanager from pathlib import Path from typing import Any, Callable, Dict, List, Optional import openai import requests from transformers import AutoTokenizer from typing_extensions import ParamSpec from aphrodite.common.utils import (FlexibleArgumentParser, get_open_port, is_hip) from aphrodite.distributed import (ensure_model_parallel_initialized, init_distributed_environment) from aphrodite.endpoints.openai.args import make_arg_parser from aphrodite.platforms import current_platform if current_platform.is_rocm(): from amdsmi import (amdsmi_get_gpu_vram_usage, amdsmi_get_processor_handles, amdsmi_init, amdsmi_shut_down) @contextmanager def _nvml(): try: amdsmi_init() yield finally: amdsmi_shut_down() elif current_platform.is_cuda(): from pynvml import (nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo, nvmlInit, nvmlShutdown) @contextmanager def _nvml(): try: nvmlInit() yield finally: nvmlShutdown() else: @contextmanager def _nvml(): yield APHRODITE_PATH = Path(__file__).parent.parent """Path to root of the Aphrodite repository.""" class RemoteOpenAIServer: DUMMY_API_KEY = "token-abc123" # Aphrodite's OpenAI server needn't API key MAX_START_WAIT_S = 240 # wait for server to start for 240 seconds def __init__( self, model: str, cli_args: List[str], *, env_dict: Optional[Dict[str, str]] = None, auto_port: bool = True, ) -> None: if auto_port: if "-p" in cli_args or "--port" in cli_args: raise ValueError("You have manually specified the port" "when `auto_port=True`.") cli_args = cli_args + ["--port", str(get_open_port())] parser = FlexibleArgumentParser( description="Aphrodite's remote OpenAI server.") parser = make_arg_parser(parser) args = parser.parse_args(cli_args) self.host = str(args.host or 'localhost') self.port = int(args.port) env = os.environ.copy() # the current process might initialize cuda, # to be safe, we should use spawn method env['APHRODITE_WORKER_MULTIPROC_METHOD'] = 'spawn' if env_dict is not None: env.update(env_dict) self.proc = subprocess.Popen(["aphrodite", "run"] + [model] + cli_args, env=env, stdout=sys.stdout, stderr=sys.stderr) self._wait_for_server(url=self.url_for("health"), timeout=self.MAX_START_WAIT_S) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.proc.terminate() try: self.proc.wait(3) except subprocess.TimeoutExpired: # force kill if needed self.proc.kill() def _wait_for_server(self, *, url: str, timeout: float): # run health check start = time.time() while True: try: if requests.get(url).status_code == 200: break except Exception as err: result = self.proc.poll() if result is not None and result != 0: raise RuntimeError("Server exited unexpectedly.") from err time.sleep(0.5) if time.time() - start > timeout: raise RuntimeError( "Server failed to start in time.") from err @property def url_root(self) -> str: return f"http://{self.host}:{self.port}" def url_for(self, *parts: str) -> str: return self.url_root + "/" + "/".join(parts) def get_client(self): return openai.OpenAI( base_url=self.url_for("v1"), api_key=self.DUMMY_API_KEY, ) def get_async_client(self): return openai.AsyncOpenAI( base_url=self.url_for("v1"), api_key=self.DUMMY_API_KEY, ) def compare_two_settings(model: str, arg1: List[str], arg2: List[str], env1: Optional[Dict[str, str]] = None, env2: Optional[Dict[str, str]] = None): """ Launch API server with two different sets of arguments/environments and compare the results of the API calls. Args: model: The model to test. arg1: The first set of arguments to pass to the API server. arg2: The second set of arguments to pass to the API server. env1: The first set of environment variables to pass to the API server. env2: The second set of environment variables to pass to the API server. """ tokenizer = AutoTokenizer.from_pretrained(model) prompt = "Hello, my name is" token_ids = tokenizer(prompt)["input_ids"] results = [] for args, env in ((arg1, env1), (arg2, env2)): with RemoteOpenAIServer(model, args, env_dict=env) as server: client = server.get_client() # test models list models = client.models.list() models = models.data served_model = models[0] results.append({ "test": "models_list", "id": served_model.id, "root": served_model.root, }) # test with text prompt completion = client.completions.create(model=model, prompt=prompt, max_tokens=5, temperature=0.0) results.append({ "test": "single_completion", "text": completion.choices[0].text, "finish_reason": completion.choices[0].finish_reason, "usage": completion.usage, }) # test using token IDs completion = client.completions.create( model=model, prompt=token_ids, max_tokens=5, temperature=0.0, ) results.append({ "test": "token_ids", "text": completion.choices[0].text, "finish_reason": completion.choices[0].finish_reason, "usage": completion.usage, }) # test seeded random sampling completion = client.completions.create(model=model, prompt=prompt, max_tokens=5, seed=33, temperature=1.0) results.append({ "test": "seeded_sampling", "text": completion.choices[0].text, "finish_reason": completion.choices[0].finish_reason, "usage": completion.usage, }) # test seeded random sampling with multiple prompts completion = client.completions.create(model=model, prompt=[prompt, prompt], max_tokens=5, seed=33, temperature=1.0) results.append({ "test": "seeded_sampling", "text": [choice.text for choice in completion.choices], "finish_reason": [choice.finish_reason for choice in completion.choices], "usage": completion.usage, }) # test simple list batch = client.completions.create( model=model, prompt=[prompt, prompt], max_tokens=5, temperature=0.0, ) results.append({ "test": "simple_list", "text0": batch.choices[0].text, "text1": batch.choices[1].text, }) # test streaming batch = client.completions.create( model=model, prompt=[prompt, prompt], max_tokens=5, temperature=0.0, stream=True, ) texts = [""] * 2 for chunk in batch: assert len(chunk.choices) == 1 choice = chunk.choices[0] texts[choice.index] += choice.text results.append({ "test": "streaming", "texts": texts, }) n = len(results) // 2 arg1_results = results[:n] arg2_results = results[n:] for arg1_result, arg2_result in zip(arg1_results, arg2_results): assert arg1_result == arg2_result, ( f"Results for {model=} are not the same with {arg1=} and {arg2=}. " f"{arg1_result=} != {arg2_result=}") def init_test_distributed_environment( tp_size: int, pp_size: int, rank: int, distributed_init_port: str, local_rank: int = -1, ) -> None: distributed_init_method = f"tcp://localhost:{distributed_init_port}" init_distributed_environment( world_size=pp_size * tp_size, rank=rank, distributed_init_method=distributed_init_method, local_rank=local_rank) ensure_model_parallel_initialized(tp_size, pp_size) def multi_process_parallel( tp_size: int, pp_size: int, test_target: Any, ) -> None: import ray # Using ray helps debugging the error when it failed # as compared to multiprocessing. # NOTE: We need to set working_dir for distributed tests, # otherwise we may get import errors on ray workers ray.init(runtime_env={"working_dir": APHRODITE_PATH}) distributed_init_port = get_open_port() refs = [] for rank in range(tp_size * pp_size): refs.append( test_target.remote(tp_size, pp_size, rank, distributed_init_port)) ray.get(refs) ray.shutdown() @contextmanager def error_on_warning(): """ Within the scope of this context manager, tests will fail if any warning is emitted. """ with warnings.catch_warnings(): warnings.simplefilter("error") yield @_nvml() def wait_for_gpu_memory_to_clear(devices: List[int], threshold_bytes: int, timeout_s: float = 120) -> None: # Use nvml instead of pytorch to reduce measurement error from torch cuda # context. start_time = time.time() while True: output: Dict[int, str] = {} output_raw: Dict[int, float] = {} for device in devices: if is_hip(): dev_handle = amdsmi_get_processor_handles()[device] mem_info = amdsmi_get_gpu_vram_usage(dev_handle) gb_used = mem_info["vram_used"] / 2**10 else: dev_handle = nvmlDeviceGetHandleByIndex(device) mem_info = nvmlDeviceGetMemoryInfo(dev_handle) gb_used = mem_info.used / 2**30 output_raw[device] = gb_used output[device] = f'{gb_used:.02f}' print('gpu memory used (GB): ', end='') for k, v in output.items(): print(f'{k}={v}; ', end='') print('') dur_s = time.time() - start_time if all(v <= (threshold_bytes / 2**30) for v in output_raw.values()): print(f'Done waiting for free GPU memory on devices {devices=} ' f'({threshold_bytes/2**30=}) {dur_s=:.02f}') break if dur_s >= timeout_s: raise ValueError(f'Memory of devices {devices=} not free after ' f'{dur_s=:.02f} ({threshold_bytes/2**30=})') time.sleep(5) _P = ParamSpec("_P") def fork_new_process_for_each_test( f: Callable[_P, None]) -> Callable[_P, None]: """Decorator to fork a new process for each test function. """ @functools.wraps(f) def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> None: # Make the process the leader of its own process group # to avoid sending SIGTERM to the parent process os.setpgrp() from _pytest.outcomes import Skipped pid = os.fork() print(f"Fork a new process to run a test {pid}") if pid == 0: try: f(*args, **kwargs) except Skipped as e: # convert Skipped to exit code 0 print(str(e)) os._exit(0) except Exception: import traceback traceback.print_exc() os._exit(1) else: os._exit(0) else: pgid = os.getpgid(pid) _pid, _exitcode = os.waitpid(pid, 0) # ignore SIGTERM signal itself old_signal_handler = signal.signal(signal.SIGTERM, signal.SIG_IGN) # kill all child processes os.killpg(pgid, signal.SIGTERM) # restore the signal handler signal.signal(signal.SIGTERM, old_signal_handler) assert _exitcode == 0, (f"function {f} failed when called with" f" args {args} and kwargs {kwargs}") return wrapper