from typing import List, Optional, Tuple import flashinfer import pytest import torch NUM_HEADS = [(16, 16), (32, 8), (64, 8), (6, 1)] HEAD_SIZES = [128, 256] BLOCK_SIZES = [16, 32] DTYPES = [torch.float16, torch.bfloat16] NUM_BLOCKS = 32768 # Large enough to test overflow in index calculation. def ref_paged_attn( query: torch.Tensor, key_cache: torch.Tensor, value_cache: torch.Tensor, query_lens: List[int], kv_lens: List[int], block_tables: torch.Tensor, scale: float, sliding_window: Optional[int] = None, soft_cap: Optional[float] = None, ) -> torch.Tensor: num_seqs = len(query_lens) block_tables = block_tables.cpu().numpy() _, block_size, num_kv_heads, head_size = key_cache.shape outputs: List[torch.Tensor] = [] start_idx = 0 for i in range(num_seqs): query_len = query_lens[i] kv_len = kv_lens[i] q = query[start_idx:start_idx + query_len] q *= scale num_kv_blocks = (kv_len + block_size - 1) // block_size block_indices = block_tables[i, :num_kv_blocks] k = key_cache[block_indices].view(-1, num_kv_heads, head_size) k = k[:kv_len] v = value_cache[block_indices].view(-1, num_kv_heads, head_size) v = v[:kv_len] if q.shape[1] != k.shape[1]: k = torch.repeat_interleave(k, q.shape[1] // k.shape[1], dim=1) v = torch.repeat_interleave(v, q.shape[1] // v.shape[1], dim=1) attn = torch.einsum("qhd,khd->hqk", q, k).float() empty_mask = torch.ones(query_len, kv_len) mask = torch.triu(empty_mask, diagonal=kv_len - query_len + 1).bool() if sliding_window is not None: sliding_window_mask = torch.triu(empty_mask, diagonal=kv_len - (query_len + sliding_window) + 1).bool().logical_not() mask |= sliding_window_mask if soft_cap is not None: attn = soft_cap * torch.tanh(attn / soft_cap) attn.masked_fill_(mask, float("-inf")) attn = torch.softmax(attn, dim=-1).to(v.dtype) out = torch.einsum("hqk,khd->qhd", attn, v) outputs.append(out) start_idx += query_len return torch.cat(outputs, dim=0) @pytest.mark.parametrize("kv_lens", [[1328, 18, 463], [1, 54, 293, 70]]) @pytest.mark.parametrize("num_heads", NUM_HEADS) @pytest.mark.parametrize("head_size", HEAD_SIZES) @pytest.mark.parametrize("block_size", BLOCK_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("soft_cap", [None, 30.0, 50.0]) @torch.inference_mode def test_flashinfer_decode_with_paged_kv(kv_lens: List[int], num_heads: Tuple[int, int], head_size: int, dtype: torch.dtype, block_size: int, soft_cap: Optional[float]) -> None: torch.set_default_device("cuda") torch.cuda.manual_seed_all(0) num_seqs = len(kv_lens) num_query_heads = num_heads[0] num_kv_heads = num_heads[1] assert num_query_heads % num_kv_heads == 0 max_kv_len = max(kv_lens) scale = head_size**-0.5 query = torch.randn(num_seqs, num_query_heads, head_size, dtype=dtype) key_value_cache = torch.randn(NUM_BLOCKS, 2, block_size, num_kv_heads, head_size, dtype=dtype) key_cache = key_value_cache[:, 0, :, :, :].squeeze(1) value_cache = key_value_cache[:, 1, :, :, :].squeeze(1) max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size block_tables = torch.randint(0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32) kv_indptr = [0] kv_indices = [] kv_last_page_lens = [] for i in range(num_seqs): seq_len = kv_lens[i] assert seq_len > 0 num_blocks = (seq_len + block_size - 1) // block_size kv_indices.extend(block_tables[i, :num_blocks]) kv_indptr.append(kv_indptr[-1] + num_blocks) kv_last_page_len = seq_len % block_size if kv_last_page_len == 0: kv_last_page_len = block_size kv_last_page_lens.append(kv_last_page_len) kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32) kv_indices = torch.tensor(kv_indices, dtype=torch.int32) kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32) workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8) wrapper = flashinfer.\ BatchDecodeWithPagedKVCacheWrapper(workspace_buffer, "NHD", use_tensor_cores=( (num_query_heads//num_kv_heads) not in (1, 2, 4, 8)) ) wrapper.begin_forward(kv_indptr, kv_indices, kv_last_page_lens, num_query_heads, num_kv_heads, head_size, block_size, "NONE", data_type=dtype) output = wrapper.forward(query, key_value_cache, logits_soft_cap=soft_cap) ref_output = ref_paged_attn(query=query, key_cache=key_cache, value_cache=value_cache, query_lens=[1] * num_seqs, kv_lens=kv_lens, block_tables=block_tables, scale=scale, soft_cap=soft_cap) torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2), \ f"{torch.max(torch.abs(output - ref_output))}" @pytest.mark.parametrize("seq_lens", [[(1, 1328), (5, 18), (129, 463)]]) @pytest.mark.parametrize("num_heads", NUM_HEADS) @pytest.mark.parametrize("head_size", HEAD_SIZES) @pytest.mark.parametrize("block_size", BLOCK_SIZES) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("soft_cap", [None, 30.0, 50.0]) @torch.inference_mode def test_flashinfer_prefill_with_paged_kv(seq_lens: List[Tuple[int, int]], num_heads: Tuple[int, int], head_size: int, dtype: torch.dtype, block_size: int, soft_cap: Optional[float]) -> None: torch.set_default_device("cuda") torch.cuda.manual_seed_all(0) num_seqs = len(seq_lens) query_lens = [x[0] for x in seq_lens] kv_lens = [x[1] for x in seq_lens] num_query_heads = num_heads[0] num_kv_heads = num_heads[1] assert num_query_heads % num_kv_heads == 0 max_kv_len = max(kv_lens) scale = head_size**-0.5 query = torch.randn(sum(query_lens), num_query_heads, head_size, dtype=dtype) key_value_cache = torch.randn(NUM_BLOCKS, 2, block_size, num_kv_heads, head_size, dtype=dtype) key_cache = key_value_cache[:, 0, :, :, :].squeeze(1) value_cache = key_value_cache[:, 1, :, :, :].squeeze(1) # Normalize the scale of the key and value caches to mitigate # numerical instability. key_cache /= head_size**0.5 value_cache /= head_size**0.5 max_num_blocks_per_seq = (max_kv_len + block_size - 1) // block_size block_tables = torch.randint(0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32) qo_indptr = [0] kv_indptr = [0] kv_indices = [] kv_last_page_lens = [] for i in range(num_seqs): seq_len = kv_lens[i] assert seq_len > 0 num_blocks = (seq_len + block_size - 1) // block_size kv_indices.extend(block_tables[i, :num_blocks]) kv_indptr.append(kv_indptr[-1] + num_blocks) kv_last_page_len = seq_len % block_size if kv_last_page_len == 0: kv_last_page_len = block_size kv_last_page_lens.append(kv_last_page_len) qo_indptr.append(qo_indptr[-1] + query_lens[i]) qo_indptr = torch.tensor(qo_indptr, dtype=torch.int32) kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32) kv_indices = torch.tensor(kv_indices, dtype=torch.int32) kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32) workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8) wrapper = flashinfer.BatchPrefillWithPagedKVCacheWrapper( workspace_buffer, "NHD") wrapper.begin_forward( qo_indptr, kv_indptr, kv_indices, kv_last_page_lens, num_query_heads, num_kv_heads, head_size, block_size, ) output = wrapper.forward( query, key_value_cache, logits_soft_cap=soft_cap, ) ref_output = ref_paged_attn(query=query, key_cache=key_cache, value_cache=value_cache, query_lens=query_lens, kv_lens=kv_lens, block_tables=block_tables, scale=scale, soft_cap=soft_cap) torch.testing.assert_close(output, ref_output, atol=1e-2, rtol=1e-2), \ f"{torch.max(torch.abs(output - ref_output))}"