from typing import Type import pytest import torch from aphrodite.modeling.layers.activation import (FastGELU, GeluAndMul, NewGELU, SiluAndMul) from .allclose_default import get_default_atol, get_default_rtol DTYPES = [torch.half, torch.bfloat16, torch.float] NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing D = [512, 4096, 5120, 13824] # Arbitrary values for testing SEEDS = [0] CUDA_DEVICES = [ f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) ] @pytest.mark.parametrize("activation", ["silu", "gelu", "gelu_tanh"]) @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) @torch.inference_mode() def test_act_and_mul( activation: str, num_tokens: int, d: int, dtype: torch.dtype, seed: int, device: str, ) -> None: torch.random.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.set_default_device(device) x = torch.randn(num_tokens, 2 * d, dtype=dtype) if activation == "silu": layer = SiluAndMul() elif activation == "gelu": layer = GeluAndMul(approximate="none") elif activation == "gelu_tanh": layer = GeluAndMul(approximate="tanh") out = layer(x) ref_out = layer.forward_native(x) # The SiLU and GELU implementations are equivalent to the native PyTorch # implementations, so we can do exact comparison. torch.testing.assert_close(out, ref_out, atol=0.0, rtol=0.0) @pytest.mark.parametrize("activation", [FastGELU, NewGELU]) @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) @torch.inference_mode() def test_activation( activation: Type[torch.nn.Module], num_tokens: int, d: int, dtype: torch.dtype, seed: int, device: str, ) -> None: torch.random.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.set_default_device(device) x = torch.randn(num_tokens, d, dtype=dtype) layer = activation() out = layer(x) ref_out = layer.forward_native(x) torch.testing.assert_close(out, ref_out, atol=get_default_atol(out), rtol=get_default_rtol(out))