# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The PygmalionAI team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rotary Positional Embeddings.""" import math from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from aphrodite.modeling._custom_op import CustomOp from aphrodite.platforms import current_platform def _rotate_neox(x: torch.Tensor) -> torch.Tensor: x1 = x[..., :x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def _rotate_gptj(x: torch.Tensor) -> torch.Tensor: x1 = x[..., ::2] x2 = x[..., 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # for TPUs def _apply_rotary_emb( x: torch.Tensor, freqs_cis: torch.Tensor, ) -> torch.Tensor: x_ = torch.view_as_complex( torch.stack(torch.chunk(x.transpose(1, 2).float(), 2, dim=-1), dim=-1)) x_out = torch.view_as_real(x_ * freqs_cis).type_as(x) x_out = torch.cat(torch.chunk(x_out, 2, dim=-1), dim=-2) x_out = x_out.reshape(x_out.shape[0], x_out.shape[1], x_out.shape[2], -1).transpose(1, 2) return x_out class RotaryEmbedding(CustomOp): """Original rotary positional embedding.""" def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: int, is_neox_style: bool, dtype: torch.dtype, ) -> None: super().__init__() self.head_size = head_size self.rotary_dim = rotary_dim self.max_position_embeddings = max_position_embeddings self.base = base self.is_neox_style = is_neox_style self.dtype = dtype cache = self._compute_cos_sin_cache() self.use_native2 = current_platform.is_tpu() and is_neox_style if not self.use_native2: cache = cache.to(dtype) self.register_buffer("cos_sin_cache", cache, persistent=False) else: cos, sin = cache.chunk(2, dim=-1) freqs_cis = cos + 1j * sin self.register_buffer("freqs_cis", freqs_cis, persistent=False) def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor: """Compute the inverse frequency.""" # NOTE: The HF implementation uses `torch.arange(...).float()`. # However, we use `torch.arange(..., dtype=torch.float)` instead to # avoid numerical issues with large base values (e.g., 10000000). # This may cause a slight numerical difference between the HF # implementation and ours. # NOTE: To exactly match the HF implementation, we need to # use CPU to compute the cache and then move it to GPU. However, we # create the cache on GPU for faster initialization. This may cause # a slight numerical difference between the HF implementation and ours. inv_freq = 1.0 / (base**(torch.arange( 0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim)) return inv_freq def _compute_cos_sin_cache(self) -> torch.Tensor: """Compute the cos and sin cache.""" inv_freq = self._compute_inv_freq(self.base) t = torch.arange(self.max_position_embeddings, dtype=torch.float) freqs = torch.einsum("i,j -> ij", t, inv_freq) cos = freqs.cos() sin = freqs.sin() cache = torch.cat((cos, sin), dim=-1) return cache def forward_native( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """A PyTorch-native implementation equivalent to forward(). This method mimics the implementation of the custom CUDA kernel used in `forward_cuda()`. """ query = query.view(*query.shape[:-1], -1, self.head_size) key = key.view(*key.shape[:-1], -1, self.head_size) query_rot = query[..., :self.rotary_dim] key_rot = key[..., :self.rotary_dim] if self.rotary_dim < self.head_size: query_pass = query[..., self.rotary_dim:] key_pass = key[..., self.rotary_dim:] self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to( positions.device, dtype=query.dtype) cos_sin = self.cos_sin_cache[torch.add(positions, offsets) if offsets is not None else positions] cos, sin = cos_sin.chunk(2, dim=-1) if self.is_neox_style: # NOTE: Here we assume that the positions tensor has the # shape [batch_size, seq_len]. cos = cos.repeat(1, 1, 2).unsqueeze(-2) sin = sin.repeat(1, 1, 2).unsqueeze(-2) else: cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2) sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2) rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj query_rot = query_rot * cos + rotate_fn(query_rot) * sin key_rot = key_rot * cos + rotate_fn(key_rot) * sin if self.rotary_dim < self.head_size: query = torch.cat((query_rot, query_pass), dim=-1) key = torch.cat((key_rot, key_pass), dim=-1) else: query = query_rot key = key_rot query = query.flatten(-2) key = key.flatten(-2) return query, key def forward_native2( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """Another PyTorch-native implementation of forward(). This method might perform better than `forward_native()` when compiled. """ if positions.dim() == 1: batch_size = 1 seq_len = positions.shape[0] else: batch_size, seq_len = positions.shape if offsets is not None: positions = positions + offsets freqs_cis = self.freqs_cis.index_select(0, positions.flatten()) freqs_cis = freqs_cis.view(batch_size, 1, seq_len, -1) query_shape = query.shape query = query.view(batch_size, seq_len, -1, self.head_size) query_rot = query[..., :self.rotary_dim] query_pass = query[..., self.rotary_dim:] query_rot = _apply_rotary_emb(query_rot, freqs_cis) query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape) key_shape = key.shape key = key.view(batch_size, seq_len, -1, self.head_size) key_rot = key[..., :self.rotary_dim] key_pass = key[..., self.rotary_dim:] key_rot = _apply_rotary_emb(key_rot, freqs_cis) key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape) return query, key def forward_cuda( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: from aphrodite import _custom_ops as ops self.cos_sin_cache = self.cos_sin_cache.to(positions.device, dtype=query.dtype) # ops.rotary_embedding()/batched_rotary_embedding() # are in-place operations that update the query and key tensors. if offsets is not None: ops.batched_rotary_embedding(positions, query, key, self.head_size, self.cos_sin_cache, self.is_neox_style, self.rotary_dim, offsets) else: ops.rotary_embedding(positions, query, key, self.head_size, self.cos_sin_cache, self.is_neox_style) return query, key def forward_xpu( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: from aphrodite._ipex_ops import ipex_ops as ops self.cos_sin_cache = self.cos_sin_cache.to(positions.device, dtype=query.dtype) # ops.rotary_embedding()/batched_rotary_embedding() # are in-place operations that update the query and key tensors. if offsets is not None: ops.batched_rotary_embedding(positions, query, key, self.head_size, self.cos_sin_cache, self.is_neox_style, self.rotary_dim, offsets) else: ops.rotary_embedding(positions, query, key, self.head_size, self.cos_sin_cache, self.is_neox_style) return query, key def forward_tpu( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: forward_fn = (self.forward_native2 if self.use_native2 else self.forward_native) return forward_fn(positions, query, key, offsets) def extra_repr(self) -> str: s = f"head_size={self.head_size}, rotary_dim={self.rotary_dim}" s += f", max_position_embeddings={self.max_position_embeddings}" s += f", base={self.base}, is_neox_style={self.is_neox_style}" return s class LinearScalingRotaryEmbedding(RotaryEmbedding): """RotaryEmbedding extended with linear scaling. It supports multiple scaling factors. Since multiple LoRA adapters may have different scaling factors, we need multiple cos/sin caches. In this way, instead of running rotary embedding kernel per lora, we can run multiple lora in a batched way. In addition to that, we also keep the cos/sin cache for the scaling factor of 1 (default) at all times. Exemplary for two scaling factors x=1, y and z with embeddings [[x11, x12, ... x1m], ..., [xn1, xn2, ..., xnm]] and [[y11, y12, ... y1o], ..., [yn1, yn2, ..., yno]], and [[z11, z12, ... z1p], ..., [zn1, zn2, ..., znp]], we construct the cos/sin cache as follows: [[x11, x12, ... x1m, y11, y12, ... y1o, z11, z12, ... z1p], ... [xn1, xn2, ... xnm, yn1, yn2, ... yno, zn1, zn2, ... znp]] We then use offsets to index into the cos/sin cache for the respective scaling factors. The offset to cache can be accessed via `scaling_factor_to_offset` API. Credits to the Reddit user /u/kaiokendev """ def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: int, is_neox_style: bool, scaling_factors: Union[List[float], float], dtype: torch.dtype, ) -> None: if isinstance(scaling_factors, float): scaling_factors = [scaling_factors] self.scaling_factors: List[float] = scaling_factors # noqa super().__init__(head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype) # Lazy initialized. self._scaling_factor_to_offset: Dict[float, int] def _compute_cos_sin_cache(self) -> torch.Tensor: inv_freq = self._compute_inv_freq(self.base) cache_list: List[torch.Tensor] = [] # offsets to the next cache in a tensor. # Each offset corresponds to the same index in scaling_factors. offsets: List[int] = [] for scaling_factor in self.scaling_factors: # NOTE: self.max_position_embeddings is the original # maximum length before applying the rope scaling. # Thus, the maximum length after applying the rope scaling is # self.max_position_embeddings * self.scaling_factor. max_len = self.max_position_embeddings * scaling_factor t = torch.arange(max_len, dtype=torch.float) t = t / scaling_factor freqs = torch.einsum("i,j -> ij", t, inv_freq) cos = freqs.cos() sin = freqs.sin() cache = torch.cat((cos, sin), dim=-1) if not cache_list: offset = 0 else: last_offset = offsets[-1] next_max_len = cache_list[-1].shape[0] offset = last_offset + next_max_len offsets.append(offset) cache_list.append(cache) self._scaling_factor_to_offset = { float(scaling_factor): offsets[i] for i, scaling_factor in enumerate(self.scaling_factors) } assert len(self.scaling_factors) == len(offsets) return torch.cat(cache_list, dim=0) @property def scaling_factor_to_offset(self) -> Dict[float, int]: return self._scaling_factor_to_offset class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding): """RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla """ def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: int, is_neox_style: bool, scaling_factor: float, dtype: torch.dtype, ) -> None: self.scaling_factor = scaling_factor super().__init__(head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype) def _compute_cos_sin_cache(self) -> torch.Tensor: # NOTE: self.max_position_embeddings is the original # maximum length before applying the rope scaling. # Thus, the maximum length after applying the rope scaling is # self.max_position_embeddings * self.scaling_factor. max_len = self.max_position_embeddings * self.scaling_factor base = self.base * ( (self.scaling_factor * max_len / self.max_position_embeddings) - (self.scaling_factor - 1))**(self.rotary_dim / (self.rotary_dim - 2)) inv_freq = self._compute_inv_freq(base) t = torch.arange(max_len, dtype=torch.float) freqs = torch.einsum("i,j -> ij", t, inv_freq) cos = freqs.cos() sin = freqs.sin() cache = torch.cat((cos, sin), dim=-1) return cache # Inverse dim formula to find dim based on number of rotations def _yarn_find_correction_dim(num_rotations: int, dim: int, base: float = 10000, max_position_embeddings: int = 2048) -> float: return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base)) # Find dim range bounds based on rotations def _yarn_find_correction_range( low_rot: int, high_rot: int, dim: int, base: float = 10000, max_position_embeddings: int = 2048) -> Tuple[int, int]: low = math.floor( _yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)) high = math.ceil( _yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)) return max(low, 0), min(high, dim - 1) # Clamp values just in case def _yarn_linear_ramp_mask(low: float, high: float, dim: int, dtype: torch.dtype) -> torch.Tensor: if low == high: high += 0.001 # Prevent singularity linear_func = (torch.arange(dim, dtype=dtype) - low) / (high - low) ramp_func = torch.clamp(linear_func, 0, 1) return ramp_func def _yarn_get_mscale(scale: float = 1) -> float: if scale <= 1: return 1.0 return 0.1 * math.log(scale) + 1.0 class YaRNScalingRotaryEmbedding(RotaryEmbedding): """RotaryEmbedding extended with YaRN method. Credits to Peng et al. github.com/jquesnelle/yarn """ def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: int, is_neox_style: bool, scaling_factor: float, dtype: torch.dtype, *, extrapolation_factor: float = 1, attn_factor: float = 1, beta_fast: int = 32, beta_slow: int = 1, ) -> None: self.scaling_factor = scaling_factor self.extrapolation_factor = extrapolation_factor self.attn_factor = attn_factor self.beta_fast = beta_fast self.beta_slow = beta_slow # Get n-d magnitude scaling corrected for interpolation self.mscale = float( _yarn_get_mscale(self.scaling_factor) * attn_factor) super().__init__(head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype) def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor: pos_freqs = self.base**( torch.arange(0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim) inv_freq_extrapolation = 1.0 / pos_freqs inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs) low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.rotary_dim, self.base, self.max_position_embeddings) # Get n-d rotational scaling corrected for extrapolation inv_freq_mask = (1 - _yarn_linear_ramp_mask( low, high, self.rotary_dim // 2, dtype=torch.float)) * self.extrapolation_factor inv_freq = inv_freq_interpolation * ( 1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask return inv_freq def _compute_cos_sin_cache(self) -> torch.Tensor: inv_freq = self._compute_inv_freq(self.scaling_factor) t = torch.arange(self.max_position_embeddings * self.scaling_factor, dtype=torch.float32) freqs = torch.einsum("i,j -> ij", t, inv_freq) cos = (freqs.cos() * self.mscale) sin = (freqs.sin() * self.mscale) cache = torch.cat((cos, sin), dim=-1) return cache class Phi3LongRoPEScaledRotaryEmbedding(nn.Module): """Phi3 family of models scaled rotary embedding. Based on the original RotaryEmbedding implementation. """ def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, original_max_position_embeddings: int, base: int, is_neox_style: bool, dtype: torch.dtype, short_factor: List[float], long_factor: List[float], short_mscale: float = 1.0, long_mscale: float = 1.0, ): super().__init__() if rotary_dim != head_size: raise ValueError( f"`Phi3LongRoPEScaledRotaryEmbedding` does not support \ rotary_dim != head_size ({rotary_dim}!={head_size}).") if is_neox_style is False: raise ValueError( "`Phi3LongRoPEScaledRotaryEmbedding` only supports neox_style." ) self.head_size = head_size self.max_position_embeddings = max_position_embeddings self.original_max_position_embeddings = original_max_position_embeddings self.base = base self.short_factor = short_factor self.long_factor = long_factor self.short_mscale = short_mscale self.long_mscale = long_mscale scale = (self.max_position_embeddings / self.original_max_position_embeddings) if scale <= 1.0: self.scaling_factor = 1.0 else: self.scaling_factor = math.sqrt( 1 + math.log(scale) / math.log(self.original_max_position_embeddings)) short_cache = self._compute_cos_sin_cache( original_max_position_embeddings, short_factor, short_mscale) short_cache = short_cache.to(dtype) self.register_buffer("short_cos_sin_cache", short_cache, persistent=False) long_cache = self._compute_cos_sin_cache(max_position_embeddings, long_factor, long_mscale) long_cache = long_cache.to(dtype) self.register_buffer("long_cos_sin_cache", long_cache, persistent=False) long_short_cache = torch.cat( [self.short_cos_sin_cache, self.long_cos_sin_cache], dim=0) self.register_buffer("long_short_cos_sin_cache", long_short_cache, persistent=False) def _compute_inv_freq(self, rescale_factors: List[float]) -> torch.Tensor: rescale_factors = torch.tensor(rescale_factors, dtype=torch.float32) inv_freq = 1.0 / (rescale_factors * (self.base**(torch.arange( 0, self.head_size, 2, dtype=torch.float) / self.head_size))) return inv_freq def _compute_cos_sin_cache( self, max_position_embeddings: int, rescale_factors: List[float], mscale: float, ) -> torch.Tensor: inv_freq = self._compute_inv_freq(rescale_factors) t = torch.arange(max_position_embeddings, dtype=torch.float) freqs = torch.einsum("i,j -> ij", t, inv_freq) cos = freqs.cos() * mscale * self.scaling_factor sin = freqs.sin() * mscale * self.scaling_factor cache = torch.cat((cos, sin), dim=-1) return cache def forward( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: query = query.view(*query.shape[:-1], -1, self.head_size) key = key.view(*key.shape[:-1], -1, self.head_size) k = self.original_max_position_embeddings long_prompt_offset = (torch.any(positions > k).float() * torch.full_like(positions, k)).long() idx = (torch.add(positions, long_prompt_offset) if long_prompt_offset is not None else positions) self.long_short_cos_sin_cache: torch.Tensor = ( self.long_short_cos_sin_cache.to(idx.device)) idx = torch.add(idx, offsets) if offsets is not None else idx cos_sin = torch.index_select(self.long_short_cos_sin_cache, 0, idx) cos, sin = cos_sin.chunk(2, dim=-1) cos = cos.repeat(1, 2).unsqueeze(-2) sin = sin.repeat(1, 2).unsqueeze(-2) query = query * cos + _rotate_neox(query) * sin key = key * cos + _rotate_neox(key) * sin return query.flatten(-2), key.flatten(-2) def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float: if scale <= 1: return 1.0 return 0.1 * mscale * math.log(scale) + 1.0 class DeepseekScalingRotaryEmbedding(RotaryEmbedding): """RotaryEmbedding extended with YaRN method. Credits to Peng et al. github.com/jquesnelle/yarn """ def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: int, is_neox_style: bool, scaling_factor: float, dtype: torch.dtype, *, extrapolation_factor: float = 1, attn_factor: float = 1, beta_fast: int = 32, beta_slow: int = 1, mscale: float = 1, mscale_all_dim: float = 0, ) -> None: self.scaling_factor = scaling_factor self.extrapolation_factor = extrapolation_factor self.attn_factor = attn_factor self.beta_fast = beta_fast self.beta_slow = beta_slow # Get n-d magnitude scaling corrected for interpolation. self.mscale = float( yarn_get_mscale(self.scaling_factor, float(mscale)) / yarn_get_mscale(self.scaling_factor, float(mscale_all_dim)) * attn_factor) super().__init__(head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype) def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor: pos_freqs = self.base**(torch.arange( 0, self.rotary_dim, 2, dtype=torch.float, device="cuda") / self.rotary_dim) inv_freq_extrapolation = 1.0 / pos_freqs inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs) low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.rotary_dim, self.base, self.max_position_embeddings) # Get n-d rotational scaling corrected for extrapolation inv_freq_mask = (1 - _yarn_linear_ramp_mask( low, high, self.rotary_dim // 2, dtype=torch.float)) * self.extrapolation_factor inv_freq = inv_freq_interpolation * ( 1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask return inv_freq def _compute_cos_sin_cache(self) -> torch.Tensor: inv_freq = self._compute_inv_freq(self.scaling_factor) t = torch.arange(self.max_position_embeddings * self.scaling_factor, device="cuda", dtype=torch.float32) freqs = torch.einsum("i,j -> ij", t, inv_freq) cos = (freqs.cos() * self.mscale) sin = (freqs.sin() * self.mscale) cache = torch.cat((cos, sin), dim=-1) print("Cache shape", cache.shape) return cache def forward( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """PyTorch-native implementation equivalent to forward().""" query_rot = query[..., :self.rotary_dim] key_rot = key[..., :self.rotary_dim] if self.rotary_dim < self.head_size: query_pass = query[..., self.rotary_dim:] key_pass = key[..., self.rotary_dim:] self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to( positions.device) cos_sin = self.cos_sin_cache[torch.add(positions, offsets) if offsets is not None else positions] cos, sin = cos_sin.chunk(2, dim=-1) if self.is_neox_style: # NOTE: Here we assume that the positions tensor has the # shape [batch_size, seq_len]. cos = cos.repeat(1, 1, 2).unsqueeze(-2) sin = sin.repeat(1, 1, 2).unsqueeze(-2) else: cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2) sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2) rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj query_rot = query_rot * cos + rotate_fn(query_rot) * sin key_rot = key_rot * cos + rotate_fn(key_rot) * sin if self.rotary_dim < self.head_size: query = torch.cat((query_rot, query_pass), dim=-1) key = torch.cat((key_rot, key_pass), dim=-1) else: query = query_rot key = key_rot return query, key class GemmaRotaryEmbedding(RotaryEmbedding): def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor: # https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/models/gemma/modeling_gemma.py#L107 inv_freq = 1.0 / (base**( torch.arange(0, self.rotary_dim, 2, dtype=torch.int64).float() / self.rotary_dim)) return inv_freq class ExtendedRotaryEmbedding(RotaryEmbedding): def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor: inv_freqs = super()._compute_inv_freq(base) return self.apply_scaling(inv_freqs) def apply_scaling(self, freqs: torch.Tensor): scale_factor = 8 low_freq_factor = 1 high_freq_factor = 4 old_context_len = 8192 low_freq_wavelen = old_context_len / low_freq_factor high_freq_wavelen = old_context_len / high_freq_factor new_freqs = [] for freq in freqs: wavelen = 2 * math.pi / freq if wavelen < high_freq_wavelen: new_freqs.append(freq) elif wavelen > low_freq_wavelen: new_freqs.append(freq / scale_factor) else: assert low_freq_wavelen != high_freq_wavelen smooth = (old_context_len / wavelen - low_freq_factor) / ( high_freq_factor - low_freq_factor) new_freqs.append((1 - smooth) * freq / scale_factor + smooth * freq) return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device) _ROPE_DICT: Dict[Tuple, RotaryEmbedding] = {} def get_rope( head_size: int, rotary_dim: int, max_position: int, base: int, is_neox_style: bool = True, rope_scaling: Optional[Dict[str, Any]] = None, dtype: Optional[torch.dtype] = None, rotary_percent: float = 1.0, ) -> RotaryEmbedding: if dtype is None: dtype = torch.get_default_dtype() if rope_scaling is not None: # Transforms every value that is a list into a tuple for caching calls rope_scaling_tuple = { k: tuple(v) if isinstance(v, list) else v for k, v in rope_scaling.items() } rope_scaling_args = tuple(rope_scaling_tuple.items()) else: rope_scaling_args = None if rotary_percent < 1.0: rotary_dim = int(rotary_dim * rotary_percent) key = (head_size, rotary_dim, max_position, base, is_neox_style, rope_scaling_args, dtype) if key in _ROPE_DICT: return _ROPE_DICT[key] if rope_scaling is None: rotary_emb = RotaryEmbedding(head_size, rotary_dim, max_position, base, is_neox_style, dtype) else: scaling_type = rope_scaling[ "type"] if "type" in rope_scaling else rope_scaling["rope_type"] # The correct one should be "longrope" but keep "su" here # for backward compatible if scaling_type not in {"su", "longrope", "llama3"}: scaling_factor = rope_scaling["factor"] if scaling_type == "llama3": rotary_emb = ExtendedRotaryEmbedding(head_size, rotary_dim, max_position, base, is_neox_style, dtype) elif scaling_type == "linear": rotary_emb = LinearScalingRotaryEmbedding(head_size, rotary_dim, max_position, base, is_neox_style, scaling_factor, dtype) elif scaling_type == "dynamic": rotary_emb = DynamicNTKScalingRotaryEmbedding( head_size, rotary_dim, max_position, base, is_neox_style, scaling_factor, dtype) elif scaling_type == "yarn": original_max_position = rope_scaling[ "original_max_position_embeddings"] extra_kwargs = { k: v for k, v in rope_scaling.items() if k in ("extrapolation_factor", "attn_factor", "beta_fast", "beta_slow") } rotary_emb = YaRNScalingRotaryEmbedding(head_size, rotary_dim, original_max_position, base, is_neox_style, scaling_factor, dtype, **extra_kwargs) elif scaling_type == "deepseek_yarn": original_max_position = rope_scaling[ "original_max_position_embeddings"] # assert max_position == original_max_position * scaling_factor extra_kwargs = { k: v for k, v in rope_scaling.items() if k in ("extrapolation_factor", "attn_factor", "beta_fast", "beta_slow", "mscale", "mscale_all_dim") } rotary_emb = DeepseekScalingRotaryEmbedding( head_size, rotary_dim, original_max_position, base, is_neox_style, scaling_factor, dtype, **extra_kwargs) # The correct one should be "longrope" but keep "su" here # for backward compatible elif scaling_type == "su" or scaling_type == "longrope": short_factor = rope_scaling["short_factor"] long_factor = rope_scaling["long_factor"] original_max_position = rope_scaling[ "original_max_position_embeddings"] extra_kwargs = { k: v for k, v in rope_scaling.items() if k in ("short_mscale", "long_mscale") } rotary_emb = Phi3LongRoPEScaledRotaryEmbedding( head_size, rotary_dim, max_position, original_max_position, base, is_neox_style, dtype, short_factor, long_factor, **extra_kwargs) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") _ROPE_DICT[key] = rotary_emb return rotary_emb