/* * Adapted from https://github.com/turboderp/exllamav2 * Copyright (c) 2024 turboderp * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef _qdq_4_cuh #define _qdq_4_cuh #include "qdq_util.cuh" namespace aphrodite { namespace exl2 { // Permutation: // // 77775555 33331111 66664444 22220000 __forceinline__ __device__ void shuffle_4bit_8 ( uint32_t* q, int stride ) { uint32_t qa = q[0]; uint32_t qb = 0; #pragma unroll for (int i = 0; i < 4; i++) { uint32_t qa0 = qa & 0x0f; uint32_t qa1 = (qa & 0xf0) >> 4; qa >>= 8; qb |= (qa1 << (i * 4 + 16)); qb |= (qa0 << (i * 4)); } q[0] = qb; } __forceinline__ __device__ void dequant_4bit_8 ( const uint32_t q_0, half2 (&dq)[4], int stride ) { const uint32_t c0 = 0x64006400; const half y16_ = __float2half_rn(1.0f / 16.0f); const half2 y16 = __halves2half2(y16_, y16_); const half z1_ = __float2half_rn(-1024.0f - 8.0f); const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f); const half2 z1 = __halves2half2(z1_, z1_); const half2 z16 = __halves2half2(z16_, z16_); uint32_t qa = q_0; half2_uint32 q0((qa & 0x000f000f) | c0); // half2(q[ 0], q[ 1]) + 1024 half2_uint32 q1((qa & 0x00f000f0) | c0); // half2(q[ 2], q[ 3]) * 16 + 1024 qa >>= 8; half2_uint32 q2((qa & 0x000f000f) | c0); // half2(q[ 4], q[ 5]) + 1024 half2_uint32 q3((qa & 0x00f000f0) | c0); // half2(q[ 6], q[ 7]) * 16 + 1024 dq[0] = __hadd2(q0.as_half2, z1); dq[1] = __hfma2(q1.as_half2, y16, z16); dq[2] = __hadd2(q2.as_half2, z1); dq[3] = __hfma2(q3.as_half2, y16, z16); } __forceinline__ __device__ void dequant_4bit_8_prep_zero_scale ( const uint32_t zero, const half scale, half2 (&z1z16)[2], half2 (&y1y16)[2] ) { half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero); half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero)); half2 scale2 = __half2half2(scale); z1z16[0] = __hmul2(scale2, __half2half2(z1.as_half)); z1z16[1] = __hmul2(scale2, __half2half2(z16)); const half y1 = __float2half_rn(1.0f); const half y16 = __float2half_rn(1.0f / 16.0f); y1y16[0] = __hmul2(scale2, __half2half2(y1)); y1y16[1] = __hmul2(scale2, __half2half2(y16)); } __forceinline__ __device__ void dequant_4bit_8_prep_zero ( const uint32_t zero, half2(&z1z16)[2], half2(&y1y16)[2] ) { half_uint16 z1(0xe400 | zero); // half(-1024.0f - zero); half z16 = __hsub(__int2half_rn(-64), __int2half_rn(zero)); z1z16[0] = __half2half2(z1.as_half); z1z16[1] = __half2half2(z16); const half y1 = __float2half_rn(1.0f); const half y16 = __float2half_rn(1.0f / 16.0f); y1y16[0] = __half2half2(y1); y1y16[1] = __half2half2(y16); } __forceinline__ __device__ void dequant_4bit_8_gptq ( const uint32_t q_0, half2 (&dq)[4], half2 (&z1z16)[2], half2 (&y1y16)[2], int stride, bool scaled ) { const uint32_t c0 = 0x64006400; uint32_t qa = q_0; half2_uint32 q0((qa & 0x000f000f) | c0); // half2( q[0] + 1024, q[1] + 1024 ) half2_uint32 q1((qa & 0x00f000f0) | c0); // half2( q[2] * 16 + 1024, q[3] * 16 + 1024 ) qa >>= 8; half2_uint32 q2((qa & 0x000f000f) | c0); // half2( q[4] + 1024, q[5] + 1024 ) half2_uint32 q3((qa & 0x00f000f0) | c0); // half2( q[6] * 16 + 1024, q[7] * 16 + 1024 ) if (scaled) { dq[0] = __hfma2(q0.as_half2, y1y16[0], z1z16[0]); // half2( q[0] * s - z * s, q[1] * s - z * s) dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] * s - z * s, q[3] * s - z * s) dq[2] = __hfma2(q2.as_half2, y1y16[0], z1z16[0]); dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]); } else { dq[0] = __hadd2(q0.as_half2, z1z16[0]); // half2( q[0] - z, q[1] - z ) dq[1] = __hfma2(q1.as_half2, y1y16[1], z1z16[1]); // half2( q[2] - z, q[3] - z ) dq[2] = __hadd2(q2.as_half2, z1z16[0]); // half2( q[4] - z, q[5] - z ) dq[3] = __hfma2(q3.as_half2, y1y16[1], z1z16[1]); // half2( q[6] - z, q[7] - z ) } } } // namespace exl2 } // namespace aphrodite #endif