"""Minimal implementation of BlipVisionModel intended to be only used within a vision language model.""" from typing import Optional, Union import torch import torch.nn as nn from PIL import Image from transformers import Blip2VisionConfig, BlipVisionConfig from transformers.models.blip.modeling_blip import BlipAttention from aphrodite.common.config import ModelConfig from aphrodite.common.sequence import SequenceData from aphrodite.inputs import LLMInputs from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.linear import (ColumnParallelLinear, RowParallelLinear) from aphrodite.multimodal.image import (cached_get_tokenizer, repeat_and_pad_image_tokens) from aphrodite.quantization import QuantizationConfig def get_blip_patch_grid_length(*, image_size: int, patch_size: int) -> int: assert image_size % patch_size == 0 return image_size // patch_size def get_blip_num_patches(*, image_size: int, patch_size: int) -> int: grid_length = get_blip_patch_grid_length(image_size=image_size, patch_size=patch_size) return grid_length * grid_length def get_blip_image_feature_size( hf_config: Union[BlipVisionConfig, Blip2VisionConfig], ) -> int: return get_blip_num_patches(image_size=hf_config.image_size, patch_size=hf_config.patch_size) def get_max_blip_image_tokens( hf_config: Union[BlipVisionConfig, Blip2VisionConfig], ) -> int: return get_blip_image_feature_size(hf_config) def dummy_seq_data_for_blip( hf_config: Union[BlipVisionConfig, Blip2VisionConfig], seq_len: int, *, image_token_id: int, image_feature_size_override: Optional[int] = None, ): if image_feature_size_override is None: image_feature_size = get_blip_image_feature_size(hf_config) else: image_feature_size = image_feature_size_override token_ids = [image_token_id] * image_feature_size token_ids += [0] * (seq_len - image_feature_size) return SequenceData(token_ids) def dummy_image_for_blip( hf_config: Union[BlipVisionConfig, Blip2VisionConfig], num_images: int, *, image_width_override: Optional[int] = None, image_height_override: Optional[int] = None, ): width = height = hf_config.image_size if image_width_override is not None: width = image_width_override if image_height_override is not None: height = image_height_override image = Image.new("RGB", (width, height), color=0) return {"image": image if num_images == 1 else [image] * num_images} def input_processor_for_blip( model_config: ModelConfig, hf_config: Union[BlipVisionConfig, Blip2VisionConfig], llm_inputs: LLMInputs, *, image_token_id: int, image_feature_size_override: Optional[int] = None, ): multi_modal_data = llm_inputs.get("multi_modal_data") if multi_modal_data is None or "image" not in multi_modal_data: return llm_inputs tokenizer = cached_get_tokenizer(model_config.tokenizer) if image_feature_size_override is None: image_feature_size = get_blip_image_feature_size(hf_config) else: image_feature_size = image_feature_size_override new_prompt, new_token_ids = repeat_and_pad_image_tokens( tokenizer, llm_inputs.get("prompt"), llm_inputs["prompt_token_ids"], image_token_id=image_token_id, repeat_count=image_feature_size, ) # NOTE: Create a defensive copy of the original inputs return LLMInputs(prompt_token_ids=new_token_ids, prompt=new_prompt, multi_modal_data=multi_modal_data) # Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/blip/modeling_blip.py#L164 # noqa class BlipVisionEmbeddings(nn.Module): def __init__(self, config: BlipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, ) self.num_patches = get_blip_num_patches(image_size=self.image_size, patch_size=self.patch_size) self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter( torch.randn(1, self.num_positions, self.embed_dim)) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to( dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) position_embeds = self.position_embedding.to(target_dtype) embeddings = embeddings + position_embeds[:, :embeddings.size(1), :] return embeddings class BlipMLP(nn.Module): def __init__(self, config: BlipVisionConfig, quant_config: Optional[QuantizationConfig] = None): super().__init__() self.config = config self.activation_fn = get_act_fn(config.hidden_act) self.fc1 = ColumnParallelLinear(config.hidden_size, config.intermediate_size, bias=True, quant_config=quant_config) self.fc2 = RowParallelLinear(config.intermediate_size, config.hidden_size, bias=True, quant_config=quant_config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states, _ = self.fc2(hidden_states) return hidden_states class BlipEncoderLayer(nn.Module): def __init__(self, config: BlipVisionConfig, quant_config: Optional[QuantizationConfig] = None): super().__init__() self.self_attn = BlipAttention(config) self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = BlipMLP(config, quant_config=quant_config) self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, _ = self.self_attn(hidden_states=hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class BlipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`BlipEncoderLayer`]. Args: config: BlipConfig """ def __init__(self, config: BlipVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None): super().__init__() self.config = config if num_hidden_layers_override is None: num_hidden_layers = config.num_hidden_layers else: num_hidden_layers = num_hidden_layers_override self.layers = nn.ModuleList([ BlipEncoderLayer(config=config, quant_config=quant_config) for _ in range(num_hidden_layers) ]) def forward(self, inputs_embeds: torch.Tensor): hidden_states = inputs_embeds for encoder_layer in self.layers: hidden_states = encoder_layer(hidden_states) return hidden_states class BlipVisionModel(nn.Module): config_class = BlipVisionConfig main_input_name = "pixel_values" def __init__(self, config: BlipVisionConfig, quant_config: Optional[QuantizationConfig] = None, num_hidden_layers_override: Optional[int] = None): super().__init__() self.config = config self.embeddings = BlipVisionEmbeddings(config) self.encoder = BlipEncoder( config=config, quant_config=quant_config, num_hidden_layers_override=num_hidden_layers_override, ) self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: hidden_states = self.embeddings(pixel_values) hidden_states = self.encoder(inputs_embeds=hidden_states) return self.post_layernorm(hidden_states)