# ruff: noqa: SIM117 import collections import copy import fnmatch import glob import json import math import os from abc import ABC, abstractmethod from contextlib import contextmanager from typing import Any, Dict, Generator, List, Optional, Tuple, Type import gguf import huggingface_hub import numpy as np import torch from huggingface_hub import HfApi, hf_hub_download from loguru import logger from torch import nn from transformers import AutoModelForCausalLM, PretrainedConfig from aphrodite.common.config import (APHRODITE_USE_MODELSCOPE, CacheConfig, DeviceConfig, LoadConfig, LoadFormat, LoRAConfig, ModelConfig, MultiModalConfig, ParallelConfig, SchedulerConfig) from aphrodite.common.utils import is_pin_memory_available from aphrodite.modeling.model_loader.tensorizer import ( TensorizerConfig, is_aphrodite_tensorized, load_with_tensorizer, serialize_aphrodite_model, tensorizer_weights_iterator) from aphrodite.modeling.model_loader.utils import (get_model_architecture, set_default_torch_dtype) from aphrodite.modeling.model_loader.weight_utils import ( download_safetensors_index_file_from_hf, download_weights_from_hf, filter_duplicate_safetensors_files, filter_files_not_needed_for_inference, get_gguf_extra_tensor_names, get_quant_config, gguf_quant_weights_iterator, initialize_dummy_weights, np_cache_weights_iterator, pt_weights_iterator, safetensors_weights_iterator) from aphrodite.modeling.models.interfaces import (has_inner_state, supports_lora, supports_multimodal) from aphrodite.modeling.utils import set_weight_attrs from aphrodite.platforms import current_platform from aphrodite.quantization.base_config import QuantizationConfig @contextmanager def device_loading_context(module: torch.nn.Module, target_device: torch.device): if target_device.type == "cpu": # If target is CPU, no need to move anything yield module return original_device_states: Dict[str, torch.device] = {} # Store original device states and move parameters to GPU if they're on CPU for name, p in module.named_parameters(): if p.device.type == "cpu": original_device_states[name] = p.device p.data = p.data.to(target_device) # Parameters already on target device are not touched try: yield module finally: # Restore parameters to their original devices, ignoring new parameters pin_memory = is_pin_memory_available() for name, p in module.named_parameters(): if name in original_device_states: original_device: torch.device = original_device_states[name] if original_device.type == "cpu": # `torch.empty_like` does not support `pin_memory` argument cpu_data = torch.empty_strided(size=p.data.size(), stride=p.data.stride(), dtype=p.data.dtype, layout=p.data.layout, device="cpu", pin_memory=pin_memory) cpu_data.copy_(p.data) p.data = cpu_data else: p.data = p.data.to(original_device) # New parameters or parameters already on target device are untouched def _get_quantization_config( model_config: ModelConfig, load_config: LoadConfig) -> Optional[QuantizationConfig]: """Get the quantization config.""" if model_config.quantization is not None: quant_config = get_quant_config(model_config, load_config) if not current_platform.is_tpu(): capability = current_platform.get_device_capability() capability = capability[0] * 10 + capability[1] if capability < quant_config.get_min_capability(): raise ValueError( f"The quantization method {model_config.quantization} " "is not supported for the current GPU. " f"Minimum capability: {quant_config.get_min_capability()}. " f"Current capability: {capability}.") supported_dtypes = quant_config.get_supported_act_dtypes() if model_config.dtype not in supported_dtypes: raise ValueError( f"{model_config.dtype} is not supported for quantization " f"method {model_config.quantization}. Supported dtypes: " f"{supported_dtypes}") return quant_config return None def _get_model_initialization_kwargs( model_class: Type[nn.Module], lora_config: Optional[LoRAConfig], multimodal_config: Optional[MultiModalConfig], scheduler_config: Optional[SchedulerConfig] = None) -> Dict[str, Any]: """Get extra kwargs for model initialization.""" extra_kwargs: Dict[str, Any] = {} if supports_lora(model_class): # lora_config=None is used to disable LoRA extra_kwargs["lora_config"] = lora_config elif lora_config: raise ValueError( f"Model {model_class.__name__} does not support LoRA, " "but LoRA is enabled. Support for this model may " "be added in the future. If this is important to you, " "please open an issue on github.") if supports_multimodal(model_class): assert multimodal_config is not None extra_kwargs["multimodal_config"] = multimodal_config if has_inner_state(model_class) and scheduler_config: extra_kwargs["scheduler_config"] = scheduler_config return extra_kwargs def build_model(model_class: Type[nn.Module], hf_config: PretrainedConfig, cache_config: Optional[CacheConfig], quant_config: Optional[QuantizationConfig], *, lora_config: Optional[LoRAConfig], multimodal_config: Optional[MultiModalConfig], scheduler_config: Optional[SchedulerConfig]) -> nn.Module: extra_kwargs = _get_model_initialization_kwargs(model_class, lora_config, multimodal_config, scheduler_config) return model_class(config=hf_config, cache_config=cache_config, quant_config=quant_config, **extra_kwargs) def _initialize_model( model_config: ModelConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], cache_config: CacheConfig, scheduler_config: Optional[SchedulerConfig] = None) -> nn.Module: """Initialize a model with the given configurations.""" model_class, _ = get_model_architecture(model_config) return build_model( model_class, model_config.hf_config, cache_config=cache_config, quant_config=_get_quantization_config(model_config, load_config), lora_config=lora_config, multimodal_config=model_config.multimodal_config, scheduler_config=scheduler_config, ) class BaseModelLoader(ABC): """Base class for model loaders.""" def __init__(self, load_config: LoadConfig): self.load_config = load_config @abstractmethod def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: """Load a model with the given configurations.""" ... class DefaultModelLoader(BaseModelLoader): """Model loader that can load different file types from disk.""" def __init__(self, load_config: LoadConfig): super().__init__(load_config) if load_config.model_loader_extra_config: raise ValueError(f"Model loader extra config is not supported for " f"load format {load_config.load_format}") def _maybe_download_from_modelscope( self, model: str, revision: Optional[str]) -> Optional[str]: """Download model from ModelScope hub if APHRODITE_USE_MODELSCOPE is True. Returns the path to the downloaded model, or None if the model is not downloaded from ModelScope.""" if APHRODITE_USE_MODELSCOPE: # download model from ModelScope hub, # lazy import so that modelscope is not required for normal use. # pylint: disable=C. from modelscope.hub.snapshot_download import snapshot_download if not os.path.exists(model): model_path = snapshot_download( model_id=model, cache_dir=self.load_config.download_dir, local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE, revision=revision, ignore_file_pattern=self.load_config.ignore_patterns, ) else: model_path = model return model_path return None def _prepare_weights(self, model_name_or_path: str, revision: Optional[str], fall_back_to_pt: bool) -> Tuple[str, List[str], bool]: """Prepare weights for the model. If the model is not local, it will be downloaded.""" model_name_or_path = self._maybe_download_from_modelscope( model_name_or_path, revision) or model_name_or_path is_local = os.path.isdir(model_name_or_path) load_format = self.load_config.load_format use_safetensors = False # Some quantized models use .pt files for storing the weights. if load_format == LoadFormat.AUTO: allow_patterns = ["*.safetensors", "*.bin"] elif load_format == LoadFormat.SAFETENSORS: use_safetensors = True allow_patterns = ["*.safetensors"] elif load_format == LoadFormat.PT: allow_patterns = ["*.pt"] elif load_format == LoadFormat.NPCACHE: allow_patterns = ["*.bin"] else: raise ValueError(f"Unknown load_format: {load_format}") if fall_back_to_pt: allow_patterns += ["*.pt"] if not is_local: hf_folder = download_weights_from_hf( model_name_or_path, self.load_config.download_dir, allow_patterns, revision, ignore_patterns=self.load_config.ignore_patterns, ) else: hf_folder = model_name_or_path hf_weights_files: List[str] = [] for pattern in allow_patterns: hf_weights_files += glob.glob(os.path.join(hf_folder, pattern)) if len(hf_weights_files) > 0: if pattern == "*.safetensors": use_safetensors = True break if use_safetensors: # For models like Mistral-7B-Instruct-v0.3 # there are both sharded safetensors files and a consolidated # safetensors file. Using both breaks. # Here, we download the `model.safetensors.index.json` and filter # any files not found in the index. if not is_local: download_safetensors_index_file_from_hf( model_name_or_path, self.load_config.download_dir, revision) hf_weights_files = filter_duplicate_safetensors_files( hf_weights_files, hf_folder) else: hf_weights_files = filter_files_not_needed_for_inference( hf_weights_files) if len(hf_weights_files) == 0: raise RuntimeError( f"Cannot find any model weights with `{model_name_or_path}`") return hf_folder, hf_weights_files, use_safetensors def _get_weights_iterator( self, model_name_or_path: str, revision: Optional[str], fall_back_to_pt: bool ) -> Generator[Tuple[str, torch.Tensor], None, None]: """Get an iterator for the model weights based on the load format.""" hf_folder, hf_weights_files, use_safetensors = self._prepare_weights( model_name_or_path, revision, fall_back_to_pt) if self.load_config.load_format == LoadFormat.NPCACHE: # Currently np_cache only support *.bin checkpoints assert use_safetensors is False weights_iterator = np_cache_weights_iterator( model_name_or_path, self.load_config.download_dir, hf_folder, hf_weights_files) elif use_safetensors: weights_iterator = safetensors_weights_iterator(hf_weights_files) else: weights_iterator = pt_weights_iterator(hf_weights_files) if current_platform.is_tpu(): # In PyTorch XLA, we should call `xm.mark_step` frequently so that # not too many ops are accumulated in the XLA program. import torch_xla.core.xla_model as xm def _xla_weights_iterator(iterator: Generator): for weights in iterator: yield weights xm.mark_step() weights_iterator = _xla_weights_iterator(weights_iterator) return weights_iterator def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: target_device = torch.device(device_config.device) with set_default_torch_dtype(model_config.dtype): with target_device: model = _initialize_model(model_config, self.load_config, lora_config, cache_config, scheduler_config) model.load_weights( self._get_weights_iterator(model_config.model, model_config.revision, fall_back_to_pt=getattr( model, "fall_back_to_pt_during_load", True)), ) for _, module in model.named_modules(): quant_method = getattr(module, "quant_method", None) if quant_method is not None: # When quant methods need to process weights after loading # (for repacking, quantizing, etc), they expect parameters # to be on the global target device. This scope is for the # case where cpu offloading is used, where we will move the # parameters onto device for processing and back off after. with device_loading_context(module, target_device): quant_method.process_weights_after_loading(module) return model.eval() class DummyModelLoader(BaseModelLoader): """Model loader that will set model weights to random values.""" def __init__(self, load_config: LoadConfig): super().__init__(load_config) if load_config.model_loader_extra_config: raise ValueError(f"Model loader extra config is not supported for " f"load format {load_config.load_format}") def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, lora_config, cache_config, scheduler_config) # NOTE: For accurate performance evaluation, we assign # random values to the weights. initialize_dummy_weights(model) return model.eval() class TensorizerLoader(BaseModelLoader): """Model loader using CoreWeave's tensorizer library.""" def __init__(self, load_config: LoadConfig): super().__init__(load_config) if isinstance(load_config.model_loader_extra_config, TensorizerConfig): self.tensorizer_config = load_config.model_loader_extra_config else: self.tensorizer_config = TensorizerConfig( **load_config.model_loader_extra_config) def _verify_config(self, model_config: ModelConfig, parallel_config: ParallelConfig): self.tensorizer_config.verify_with_model_config(model_config) self.tensorizer_config.verify_with_parallel_config(parallel_config) def _get_weights_iterator( self) -> Generator[Tuple[str, torch.Tensor], None, None]: tensorizer_args = self.tensorizer_config._construct_tensorizer_args() return tensorizer_weights_iterator(tensorizer_args) def _load_model_serialized_cpu( self, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], cache_config: CacheConfig, ) -> nn.Module: """Load a serialized model with tensorizer to the CPU. This is only necessary when the model isn't Aphrodite-tensorized (see examples/tensorize_aphrodite_model.py) This should still be faster than default HuggingFace loading, but will be slower than loading a Aphrodite-tensorized model. """ with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, lora_config, cache_config) model.load_weights(self._get_weights_iterator()) return model.eval() def _load_model_serialized( self, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], cache_config: CacheConfig, ) -> nn.Module: """Load a serialized model with tensorizer. Expects a Aphrodite-tensorized model. See the examples/tensorize_aphrodite_model.py example script for serializing Aphrodite models.""" with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model_class = get_model_architecture(model_config)[0] quant_config = _get_quantization_config( model_config, self.load_config) extra_kwargs = _get_model_initialization_kwargs( model_class, lora_config, model_config.multimodal_config) extra_kwargs["quant_config"] = quant_config extra_kwargs["cache_config"] = cache_config tensorizer_config = copy.copy(self.tensorizer_config) tensorizer_config.model_class = model_class tensorizer_config.hf_config = model_config.hf_config tensorizer_config.dtype = model_config.dtype model = load_with_tensorizer(tensorizer_config, **extra_kwargs) return model.eval() def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: self._verify_config(model_config, parallel_config) if parallel_config.tensor_parallel_size > 1: from aphrodite.distributed import get_tensor_model_parallel_rank self.tensorizer_config.tensorizer_uri = \ self.tensorizer_config.tensorizer_uri \ % get_tensor_model_parallel_rank() if is_aphrodite_tensorized(self.tensorizer_config): return self._load_model_serialized(model_config, device_config, lora_config, cache_config) return self._load_model_serialized_cpu(model_config, device_config, lora_config, cache_config) @staticmethod def save_model( model: torch.nn.Module, tensorizer_config: TensorizerConfig, ) -> None: serialize_aphrodite_model( model=model, tensorizer_config=tensorizer_config, ) class ShardedStateLoader(BaseModelLoader): """ Model loader that directly loads each worker's model state dict, which enables a fast load path for large tensor-parallel models where each worker only needs to read its own shard rather than the entire checkpoint. See `examples/save_sharded_state.py` for creating a sharded checkpoint. """ DEFAULT_PATTERN = "model-rank-{rank}-part-{part}.safetensors" def __init__(self, load_config: LoadConfig): super().__init__(load_config) extra_config = ({} if load_config.model_loader_extra_config is None else load_config.model_loader_extra_config.copy()) self.pattern = extra_config.pop("pattern", self.DEFAULT_PATTERN) if extra_config: raise ValueError(f"Unexpected extra config keys for load format " f"{load_config.load_format}: " f"{load_config.model_loader_extra_config.keys()}") @staticmethod def _filter_subtensors( tensors: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Filter out all tensors that share the same memory or a subset of the memory of another tensor. """ same_storage_groups: Dict[Any, List[Tuple[ str, torch.Tensor]]] = collections.defaultdict(list) for key, tensor in tensors.items(): if tensor.numel(): ptr = tensor.untyped_storage().data_ptr() same_storage_groups[tensor.device, ptr].append((key, tensor)) def get_end_ptr(tensor: torch.Tensor) -> int: return tensor.view(-1)[-1].data_ptr() + tensor.element_size() result: Dict[str, torch.Tensor] = {} for group in same_storage_groups.values(): for k, t in group: a, b = t.data_ptr(), get_end_ptr(t) for k2, t2 in group: if not t2.is_contiguous(): continue a2, b2 = t2.data_ptr(), get_end_ptr(t2) if a < a2 or b2 < b: continue if a2 < a or b < b2 or not t.is_contiguous(): break # t2 covers strictly more memory than t. if k2 < k: # Same tensors, keep the one with the smaller key. break else: result[k] = t return result def _prepare_weights(self, model_name_or_path: str, revision: Optional[str]): if os.path.isdir(model_name_or_path): return model_name_or_path else: allow_patterns = ["*.safetensors"] return download_weights_from_hf( model_name_or_path, self.load_config.download_dir, allow_patterns, revision, ignore_patterns=self.load_config.ignore_patterns, ) def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: from safetensors.torch import safe_open from aphrodite.distributed import get_tensor_model_parallel_rank local_model_path = self._prepare_weights(model_config.model, model_config.revision) with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, lora_config, cache_config) rank = get_tensor_model_parallel_rank() pattern = os.path.join( local_model_path, self.pattern.format(rank=rank, part="*"), ) filepaths = glob.glob(pattern) if not filepaths: # TODO: support un-sharded checkpoints too raise ValueError( f"Could not find checkpoint files '{pattern}', only " f"pre-sharded checkpoints are currently supported!") state_dict = self._filter_subtensors(model.state_dict()) for path in filepaths: with safe_open(path, framework="pt") as f: for key in f.keys(): # noqa: SIM118 tensor = f.get_tensor(key) # If loading with LoRA enabled, additional padding may # be added to certain parameters. We only load into a # narrowed view of the parameter data. param_data = state_dict[key].data param_shape = state_dict[key].shape for dim, size in enumerate(tensor.shape): if size < param_shape[dim]: param_data = param_data.narrow(dim, 0, size) if tensor.shape != param_shape: logger.warning("loading tensor of shape " f"{tensor.shape} into parameter " f"'{key}' of shape {param_shape}") param_data.copy_(tensor) state_dict.pop(key) if state_dict: raise ValueError( f"Missing keys {tuple(state_dict)} in loaded state!") return model.eval() @staticmethod def save_model( model: torch.nn.Module, path: str, pattern: Optional[str] = None, max_size: Optional[int] = None, ) -> None: from safetensors.torch import save_file from aphrodite.distributed import get_tensor_model_parallel_rank if pattern is None: pattern = ShardedStateLoader.DEFAULT_PATTERN rank = get_tensor_model_parallel_rank() part_idx = 0 total_size = 0 state_dict = ShardedStateLoader._filter_subtensors(model.state_dict()) state_dict_part: Dict[str, torch.Tensor] = {} for key, tensor in state_dict.items(): param_size = tensor.nelement() * tensor.element_size() if max_size is not None and total_size + param_size > max_size: filename = pattern.format(rank=rank, part=part_idx) save_file( state_dict_part, os.path.join(path, filename), ) part_idx += 1 total_size = 0 state_dict_part = {} state_dict_part[key] = tensor total_size += param_size if len(state_dict_part) > 0: filename = pattern.format(rank=rank, part=part_idx) save_file( state_dict_part, os.path.join(path, filename), ) class BitsAndBytesModelLoader(BaseModelLoader): """Model loader to load model weights with BitAndBytes quantization.""" default_target_modules = [ "gate_proj", "down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj" ] possible_config_file_names = ["adapter_config.json"] def __init__(self, load_config: LoadConfig): super().__init__(load_config) # we don't need to quantize the whole model, only the target modules # that are specified in the adapter config file. If the adapter config # file is not provided, we will quantize the default modules. if (not load_config.model_loader_extra_config or "qlora_adapter_name_or_path" not in load_config.model_loader_extra_config): self.target_modules = self.default_target_modules return qlora_adapter = load_config.model_loader_extra_config[ "qlora_adapter_name_or_path"] config_file_path = self._get_config_file(qlora_adapter) with open(config_file_path, "r") as f: config = json.load(f) self.target_modules = config["target_modules"] def _get_config_file(self, qlora_adapter: str) -> str: is_local = os.path.isdir(qlora_adapter) config_file_path = None if is_local: for file in self.possible_config_file_names: config_file_path = os.path.join(qlora_adapter, file) if os.path.exists(config_file_path): break else: hf_api = HfApi() repo_files = hf_api.list_repo_files(repo_id=qlora_adapter) for file in self.possible_config_file_names: if file in repo_files: config_file_path = hf_hub_download(repo_id=qlora_adapter, filename=file) break if not config_file_path: raise ValueError( f"Cannot find adapter config file in {qlora_adapter}") return config_file_path def _get_weight_files( self, model_name_or_path: str, allowed_patterns: List[str], revision: Optional[str] = None) -> Tuple[List[str], str]: """Retrieve weight files. Download the files if necessary. Return the weight files and the file pattern.""" is_local = os.path.isdir(model_name_or_path) if is_local: for pattern in allowed_patterns: weight_files = glob.glob( os.path.join(model_name_or_path, pattern)) if weight_files: return weight_files, pattern else: hf_api = HfApi() repo_files = hf_api.list_repo_files(repo_id=model_name_or_path) for pattern in allowed_patterns: matching_files = fnmatch.filter(repo_files, pattern) if matching_files: hf_folder = download_weights_from_hf( model_name_or_path, self.load_config.download_dir, [pattern], revision, ignore_patterns=self.load_config.ignore_patterns, ) return glob.glob(os.path.join(hf_folder, pattern)), pattern raise RuntimeError( f"No model weights found in: `{model_name_or_path}`") def _prepare_weights(self, model_name_or_path: str, revision: Optional[str]) -> Tuple[List[str], bool]: """Prepare weight files for the model.""" allowed_patterns = ["*.safetensors", "*.bin", "*.pt"] hf_weights_files, matched_pattern = self._get_weight_files( model_name_or_path, allowed_patterns, revision) if matched_pattern != "*.safetensors": hf_weights_files = filter_files_not_needed_for_inference( hf_weights_files) if len(hf_weights_files) == 0: raise RuntimeError( f"Cannot find any model weights with `{model_name_or_path}`") return hf_weights_files, matched_pattern == "*.safetensors" def _hf_weight_iter(self, hf_weights_files, use_safetensors: bool): if use_safetensors: return safetensors_weights_iterator(hf_weights_files) else: return pt_weights_iterator(hf_weights_files) def _get_quantized_weights_iterator( self, model_name_or_path: str, revision: Optional[str], pre_quant: bool ) -> Tuple[Generator[Tuple[str, torch.Tensor], None, None], Dict[str, Any]]: """Get an iterator to the model weights with bitsandbytes quantization, as well as the quantization state dictionary.""" # only load the bitsandbytes module when needed try: import bitsandbytes from bitsandbytes.functional import QuantState if bitsandbytes.__version__ < "0.42.0": raise ImportError("bitsandbytes version is wrong. Please " "install bitsandbytes>=0.42.0.") from bitsandbytes.functional import quantize_4bit except ImportError as err: raise ImportError("Please install bitsandbytes>=0.42.0 via " "`pip install bitsandbytes>=0.42.0` to use " "bitsandbytes quantizer.") from err hf_weights_files, use_safetensors = self._prepare_weights( model_name_or_path, revision) quant_state_dict = {} def quantized_checkpoint() -> Generator: # First iterate over all quant state weights weight_iterator = self._hf_weight_iter(hf_weights_files, use_safetensors) temp_state_dict = {} for weight_name, weight_tensor in weight_iterator: if weight_name.endswith(".weight"): continue # TODO: only nf4 quantization is supported for now if weight_name.endswith(".quant_state.bitsandbytes__fp4"): raise NotImplementedError( "Only bitsandbytes_nf4 quantization" f"is supported for now. {weight_name} is fp4 quantized" ) temp_state_dict[weight_name] = weight_tensor # Closure to parse quant_state for each prequant weight def _parse_quant_state(param_name: str, temp_state_dict: Dict) -> QuantState: quant_state = {} for k in temp_state_dict: if param_name + "." in k: quant_state[k] = temp_state_dict[k] # bitsandbytes library requires # weight.quant_state.bitsandbytes__nf4 in CPU quant_state[param_name + ".quant_state.bitsandbytes__nf4"] = quant_state[ param_name + ".quant_state.bitsandbytes__nf4"].cpu().data return QuantState.from_dict(quant_state, device="cuda") # Second iterate over all prequant and normal weights # pre quantized weights would have a quant_state for weight_name, weight_tensor in self._hf_weight_iter( hf_weights_files, use_safetensors): # Filter out all weights whose suffix is not ".weight" if not weight_name.endswith(".weight"): continue if weight_name + ".quant_state.bitsandbytes__nf4" \ in temp_state_dict: quant_state = _parse_quant_state(weight_name, temp_state_dict) weight_name = weight_name.replace(".weight", ".qweight") quant_state_dict[weight_name] = quant_state yield weight_name.replace(".weight", ".qweight"), weight_tensor else: yield weight_name, weight_tensor def generator() -> Generator: for weight_name, weight_tensor in self._hf_weight_iter( hf_weights_files, use_safetensors): if any(target_module in weight_name for target_module in self.target_modules): weight_name = weight_name.replace(".weight", ".qweight") # bitsandbytes requires data in GPU loaded_weight = weight_tensor.cuda().data with set_default_torch_dtype(torch.float32): processed_weight, quant_state = quantize_4bit( loaded_weight, compress_statistics=True, quant_type="nf4") quant_state_dict[weight_name] = quant_state else: processed_weight = weight_tensor yield weight_name, processed_weight if pre_quant: return quantized_checkpoint(), quant_state_dict return generator(), quant_state_dict def _load_weights(self, model_config: ModelConfig, model: nn.Module) -> None: if not hasattr(model, 'load_weights'): raise AttributeError( "The required method 'load_weights' is not defined in class" f" {type(self).__name__}.") if not hasattr(model, 'bitsandbytes_stacked_params_mapping'): raise AttributeError( f"Model {type(self).__name__} does not support BitsAndBytes " "quantization yet.") logger.info("Loading weights with BitsAndBytes quantization. " "This May take a while ...") is_quantized_checkpoint = False quant_config = getattr(model_config.hf_config, "quantization_config", None) if quant_config is not None and quant_config.get( 'quant_method') == "bitsandbytes": is_quantized_checkpoint = True qweight_iterator, quant_state_dict = \ self._get_quantized_weights_iterator( model_config.model, model_config.revision, is_quantized_checkpoint) model.load_weights(qweight_iterator) torch.cuda.empty_cache() param_dict = dict(model.named_parameters()) stacked_quant_state_dict: Dict[str, Dict[int, Any]] = {} for quant_param_name in quant_state_dict: non_stacked_param_name = quant_param_name shard_index = 0 for shard_name, ( weight_name, index ) in model.bitsandbytes_stacked_params_mapping.items(): if shard_name in quant_param_name: shard_index = index quant_param_name = quant_param_name.replace( shard_name, weight_name) break if quant_param_name not in param_dict: raise ValueError( f"Parameter {quant_param_name} not found in the model.") if quant_param_name not in stacked_quant_state_dict: stacked_quant_state_dict[quant_param_name] = {} stacked_quant_state_dict[quant_param_name][shard_index] = ( quant_state_dict[non_stacked_param_name]) # save quant_states and offsets as the attributes of the parameters for param_name, param in param_dict.items(): if param_name in stacked_quant_state_dict: quant_states = stacked_quant_state_dict[param_name] set_weight_attrs(param, {"bnb_quant_state": quant_states}) pack_ratio = getattr(param, "pack_factor", -1) if pack_ratio == -1: raise ValueError( f"pack_factor not set for parameter {param_name}.") num_elements = [0] * len(quant_states) for seq, quant_state in quant_states.items(): num_elements[seq] = math.prod( quant_state.shape) // pack_ratio offsets = np.concatenate(([0], np.cumsum(num_elements))) set_weight_attrs(param, {"bnb_shard_offsets": offsets}) def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, lora_config, cache_config) self._load_weights(model_config, model) return model.eval() class GGUFModelLoader(BaseModelLoader): """ Model loader that can load GGUF files. This is useful for loading models that are quantized with GGUF and saved in the GGUF format. This loader supports loading both full models and sharded models. """ def __init__(self, load_config: LoadConfig): super().__init__(load_config) if load_config.model_loader_extra_config: raise ValueError(f"Model loader extra config is not supported for " f"load format {load_config.load_format}") def _prepare_weights(self, model_name_or_path: str): if os.path.isfile(model_name_or_path): return model_name_or_path else: raise ValueError(f"{model_name_or_path} is not a file.") def _get_gguf_weights_map(self, model_config: ModelConfig): """ GGUF uses this naming convention for their tensors from HF checkpoint: `blk.N.BB.weight` and `blk.N.BB.bias` where N signifies the block number of a layer, and BB signifies the attention/mlp layer components. See "Standardized tensor names" in https://github.com/ggerganov/ggml/blob/master/docs/gguf.md for details. """ config = model_config.hf_config model_type = config.model_type # hack: ggufs have a different name than transformers if model_type == "cohere": model_type = "command-r" arch = None for key, value in gguf.MODEL_ARCH_NAMES.items(): if value == model_type: arch = key break if arch is None: raise RuntimeError(f"Unknown gguf model_type: {model_type}") num_layers = config.num_hidden_layers name_map = gguf.get_tensor_name_map(arch, num_layers) with torch.device("meta"): dummy_model = AutoModelForCausalLM.from_config(config) state_dict = dummy_model.state_dict() gguf_to_hf_name_map = {} for hf_name in state_dict: name, suffix = hf_name.rsplit(".", 1) gguf_name = name_map.get_name(name) gguf_to_hf_name_map[f"{gguf_name}.{suffix}"] = hf_name return gguf_to_hf_name_map def _get_weights_iterator( self, model_name_or_path: str, gguf_to_hf_name_map: Dict[str, str] ) -> Generator[Tuple[str, torch.Tensor], None, None]: return gguf_quant_weights_iterator(model_name_or_path, gguf_to_hf_name_map) def load_model(self, *, model_config: ModelConfig, device_config: DeviceConfig, lora_config: Optional[LoRAConfig], parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, cache_config: CacheConfig) -> nn.Module: local_model_path = self._prepare_weights(model_config.model) gguf_weights_map = self._get_gguf_weights_map(model_config) # we can only know if tie word embeddings after mapping weights if "lm_head.weight" in get_gguf_extra_tensor_names( local_model_path, gguf_weights_map): model_config.hf_config.update({"tie_word_embeddings": True}) with set_default_torch_dtype(model_config.dtype): with torch.device(device_config.device): model = _initialize_model(model_config, self.load_config, lora_config, cache_config) model.load_weights( self._get_weights_iterator(local_model_path, gguf_weights_map)) return model def get_model_loader(load_config: LoadConfig) -> BaseModelLoader: """Get a model loader based on the load format.""" if isinstance(load_config.load_format, type): return load_config.load_format(load_config) if load_config.load_format == LoadFormat.DUMMY: return DummyModelLoader(load_config) if load_config.load_format == LoadFormat.TENSORIZER: return TensorizerLoader(load_config) if load_config.load_format == LoadFormat.SHARDED_STATE: return ShardedStateLoader(load_config) if load_config.load_format == LoadFormat.BITSANDBYTES: return BitsAndBytesModelLoader(load_config) if load_config.load_format == LoadFormat.GGUF: return GGUFModelLoader(load_config) return DefaultModelLoader(load_config)