import torch import torch.nn.functional as F from torch_xla.experimental.custom_kernel import _histogram def fused_moe( hidden_states: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor, gating_output: torch.Tensor, topk: int, renormalize: bool, ) -> torch.Tensor: """ Args: hidden_states: [*, hidden_size] w1: [num_experts, intermediate_size * 2, hidden_size] w2: [num_experts, hidden_size, intermediate_size] gating_output: [*, num_experts] """ orig_shape = hidden_states.shape hidden_size = hidden_states.shape[-1] num_tokens = hidden_states.shape[:-1].numel() num_experts = w1.shape[0] intermediate_size = w2.shape[-1] device = hidden_states.device dtype = hidden_states.dtype assert (num_tokens * topk) % 16 == 0, ( "The Pallas GMM kernel requires num_tokens * topk to be a multiple of " f"16 but got {num_tokens * topk}") hidden_states = hidden_states.view(num_tokens, hidden_size) gating_output = gating_output.view(num_tokens, num_experts) topk_weights = gating_output.softmax(dim=-1, dtype=torch.float) topk_weights, topk_indices = topk_weights.topk(topk, dim=-1) if renormalize: topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True) topk_weights = topk_weights.to(dtype) topk_indices = topk_indices.flatten() topk_argsort_indices = topk_indices.argsort() topk_argsort_revert_indices = topk_argsort_indices.argsort() token_indices = torch.arange(num_tokens, device=device).repeat_interleave(topk) token_indices = token_indices[topk_argsort_indices] group_sizes = _histogram(topk_indices.to(torch.int32), 0, num_experts - 1) # NOTE: The GMM Pallas kernel requires a different weight layout # from HF Transformers. w1 = w1.transpose(1, 2) w2 = w2.transpose(1, 2) x = hidden_states[token_indices] x = torch.ops.xla.gmm(x, w1, group_sizes) x = F.silu(x[..., :intermediate_size]) * x[..., intermediate_size:] x = torch.ops.xla.gmm(x, w2, group_sizes) x = x[topk_argsort_revert_indices].reshape(-1, topk, hidden_size) x = x * topk_weights.unsqueeze_(dim=-1) x = x.sum(dim=-2) x = x.reshape(orig_shape) return x