import asyncio import importlib import inspect import json import multiprocessing import os import re import tempfile from argparse import Namespace from contextlib import asynccontextmanager from distutils.util import strtobool from http import HTTPStatus from typing import AsyncGenerator, AsyncIterator, List, Set, Tuple from fastapi import APIRouter, FastAPI, Request from fastapi.exceptions import RequestValidationError from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import (HTMLResponse, JSONResponse, Response, StreamingResponse) from loguru import logger from starlette.routing import Mount from aphrodite.common.config import ModelConfig from aphrodite.common.outputs import RequestOutput from aphrodite.common.sampling_params import _SAMPLING_EPS, SamplingParams from aphrodite.common.utils import (FlexibleArgumentParser, get_open_zmq_ipc_path, in_windows, random_uuid) from aphrodite.endpoints.logger import RequestLogger from aphrodite.endpoints.openai.args import make_arg_parser # yapf: disable from aphrodite.endpoints.openai.protocol import (ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, DetokenizeRequest, DetokenizeResponse, EmbeddingRequest, ErrorResponse, KAIGenerationInputSchema, TokenizeRequest, TokenizeResponse) from aphrodite.endpoints.openai.rpc.client import AsyncEngineRPCClient from aphrodite.endpoints.openai.rpc.server import run_rpc_server # yapf: enable from aphrodite.endpoints.openai.serving_chat import OpenAIServingChat from aphrodite.endpoints.openai.serving_completions import ( OpenAIServingCompletion) from aphrodite.endpoints.openai.serving_embedding import OpenAIServingEmbedding from aphrodite.endpoints.openai.serving_engine import (LoRAModulePath, PromptAdapterPath) from aphrodite.endpoints.openai.serving_tokenization import ( OpenAIServingTokenization) from aphrodite.engine.args_tools import AsyncEngineArgs from aphrodite.engine.async_aphrodite import AsyncAphrodite from aphrodite.engine.protocol import AsyncEngineClient from aphrodite.server import serve_http from aphrodite.transformers_utils.tokenizer import get_tokenizer from aphrodite.version import __version__ as APHRODITE_VERSION if in_windows(): import winloop as uvloop else: import uvloop TIMEOUT_KEEP_ALIVE = 5 # seconds SERVE_KOBOLD_LITE_UI = strtobool(os.getenv("SERVE_KOBOLD_LITE_UI", "1")) async_engine_client: AsyncEngineClient engine_args: AsyncEngineArgs openai_serving_chat: OpenAIServingChat openai_serving_completion: OpenAIServingCompletion openai_serving_embedding: OpenAIServingEmbedding openai_serving_tokenization: OpenAIServingTokenization router = APIRouter() kai_api = APIRouter() extra_api = APIRouter() kobold_lite_ui = "" sampler_json = "" gen_cache: dict = {} prometheus_multiproc_dir: tempfile.TemporaryDirectory _running_tasks: Set[asyncio.Task] = set() def model_is_embedding(model_name: str, trust_remote_code: bool) -> bool: return ModelConfig(model=model_name, tokenizer=model_name, tokenizer_mode="auto", trust_remote_code=trust_remote_code, seed=0, dtype="auto").embedding_mode @asynccontextmanager async def lifespan(app: FastAPI): async def _force_log(): while True: await asyncio.sleep(10) await async_engine_client.do_log_stats() if not engine_args.disable_log_stats: task = asyncio.create_task(_force_log()) _running_tasks.add(task) task.add_done_callback(_running_tasks.remove) yield @asynccontextmanager async def build_async_engine_client(args) -> AsyncIterator[AsyncEngineClient]: # Context manager to handle async_engine_client lifecycle # Ensures everything is shutdown and cleaned up on error/exit global engine_args engine_args = AsyncEngineArgs.from_cli_args(args) # Backend itself still global for the silly lil' health handler global async_engine_client # If manually triggered or embedding model, use AsyncAphrodite in process. # TODO: support embedding model via RPC. if (model_is_embedding(args.model, args.trust_remote_code) or args.disable_frontend_multiprocessing): async_engine_client = AsyncAphrodite.from_engine_args(engine_args) yield async_engine_client return # Otherwise, use the multiprocessing AsyncAphrodite. else: if "PROMETHEUS_MULTIPROC_DIR" not in os.environ: # Make TemporaryDirectory for prometheus multiprocessing # Note: global TemporaryDirectory will be automatically # cleaned up upon exit. global prometheus_multiproc_dir prometheus_multiproc_dir = tempfile.TemporaryDirectory() os.environ[ "PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name else: logger.warning( "Found PROMETHEUS_MULTIPROC_DIR was set by user. " "This directory must be wiped between Aphrodite runs or " "you will find inaccurate metrics. Unset the variable " "and Aphrodite will properly handle cleanup.") # Select random path for IPC. rpc_path = get_open_zmq_ipc_path() logger.info(f"Multiprocessing frontend to use {rpc_path} for RPC Path." ) # Start RPCServer in separate process (holds the AsyncAphrodite). context = multiprocessing.get_context("spawn") # the current process might have CUDA context, # so we need to spawn a new process rpc_server_process = context.Process( target=run_rpc_server, args=(engine_args, rpc_path)) rpc_server_process.start() logger.info( f"Started engine process with PID {rpc_server_process.pid}") # Build RPCClient, which conforms to AsyncEngineClient Protocol. async_engine_client = AsyncEngineRPCClient(rpc_path) try: while True: try: await async_engine_client.setup() break except TimeoutError as e: if not rpc_server_process.is_alive(): raise RuntimeError( "The server process died before " "responding to the readiness probe") from e yield async_engine_client finally: # Ensure rpc server process was terminated rpc_server_process.terminate() # Close all open connections to the backend async_engine_client.close() # Wait for server process to join rpc_server_process.join() # Lazy import for prometheus multiprocessing. # We need to set PROMETHEUS_MULTIPROC_DIR environment variable # before prometheus_client is imported. # See https://prometheus.github.io/client_python/multiprocess/ from prometheus_client import multiprocess multiprocess.mark_process_dead(rpc_server_process.pid) def mount_metrics(app: FastAPI): # Lazy import for prometheus multiprocessing. # We need to set PROMETHEUS_MULTIPROC_DIR environment variable # before prometheus_client is imported. # See https://prometheus.github.io/client_python/multiprocess/ from prometheus_client import (CollectorRegistry, make_asgi_app, multiprocess) prometheus_multiproc_dir_path = os.getenv("PROMETHEUS_MULTIPROC_DIR", None) if prometheus_multiproc_dir_path is not None: logger.info(f"Aphrodite to use {prometheus_multiproc_dir_path} " "as PROMETHEUS_MULTIPROC_DIR") registry = CollectorRegistry() multiprocess.MultiProcessCollector(registry) # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app(registry=registry)) else: # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app()) # Workaround for 307 Redirect for /metrics metrics_route.path_regex = re.compile('^/metrics(?P.*)$') app.routes.append(metrics_route) @router.get("/health") async def health() -> Response: """Health check.""" await async_engine_client.check_health() return Response(status_code=200) @router.post("/v1/tokenize") async def tokenize(request: TokenizeRequest): generator = await openai_serving_tokenization.create_tokenize(request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: assert isinstance(generator, TokenizeResponse) return JSONResponse(content=generator.model_dump()) @router.post("/v1/detokenize") async def detokenize(request: DetokenizeRequest): generator = await openai_serving_tokenization.create_detokenize(request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: assert isinstance(generator, DetokenizeResponse) return JSONResponse(content=generator.model_dump()) @router.get("/v1/models") async def show_available_models(): models = await openai_serving_completion.show_available_models() return JSONResponse(content=models.model_dump()) @router.get("/version") async def show_version(): ver = {"version": APHRODITE_VERSION} return JSONResponse(content=ver) @router.get("/.well-known/serviceinfo") async def serviceinfo(): """Return service information including version, API endpoints, and documentation URLs.""" return JSONResponse(content={ "version": 0.2, "software": { "name": "Aphrodite Engine", "version": APHRODITE_VERSION, "repository": "https://github.com/PygmalionAI/aphrodite-engine", "homepage": "https://aphrodite.pygmalion.chat", "logo": "https://pygmalion.chat/icons/favicon.ico", }, "api": { "openai": { "name": "OpenAI API", "rel_url": "/v1", "documentation": "/redoc", "version": 1, }, "koboldai": { "name": "KoboldAI API", "rel_url": "/api", "documentation": "/redoc", "version": 1, } } }) @router.post("/v1/chat/completions") async def create_chat_completion(request: ChatCompletionRequest, raw_request: Request): generator = await openai_serving_chat.create_chat_completion( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) if request.stream: return StreamingResponse(content=generator, media_type="text/event-stream") else: assert isinstance(generator, ChatCompletionResponse) return JSONResponse(content=generator.model_dump()) @router.post("/v1/completions") async def create_completion(request: CompletionRequest, raw_request: Request): generator = await openai_serving_completion.create_completion( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) if request.stream: return StreamingResponse(content=generator, media_type="text/event-stream") else: return JSONResponse(content=generator.model_dump()) @router.post("/v1/embeddings") async def create_embedding(request: EmbeddingRequest, raw_request: Request): generator = await openai_serving_embedding.create_embedding( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: return JSONResponse(content=generator.model_dump()) @router.post("/v1/lora/load") async def load_lora(lora: LoRAModulePath): openai_serving_completion.add_lora(lora) if engine_args.enable_lora is False: logger.error("LoRA is not enabled in the engine. " "Please start the server with the " "--enable-lora flag!") return JSONResponse(content={"status": "success"}) @router.delete("/v1/lora/unload") async def unload_lora(lora_name: str): openai_serving_completion.remove_lora(lora_name) return JSONResponse(content={"status": "success"}) @router.post("/v1/soft_prompt/load") async def load_soft_prompt(soft_prompt: PromptAdapterPath): openai_serving_completion.add_prompt_adapter(soft_prompt) if engine_args.enable_prompt_adapter is False: logger.error("Prompt Adapter is not enabled in the engine. " "Please start the server with the " "--enable-prompt-adapter flag!") return JSONResponse(content={"status": "success"}) @router.delete("/v1/soft_prompt/unload") async def unload_soft_prompt(soft_prompt_name: str): openai_serving_completion.remove_prompt_adapter(soft_prompt_name) return JSONResponse(content={"status": "success"}) # ============ KoboldAI API ============ # badwordsids: List[int] = [] def _set_badwords(tokenizer, hf_config): # pylint: disable=redefined-outer-name # pylint: disable=global-variable-undefined global badwordsids if hf_config.bad_words_ids is not None: badwordsids = hf_config.bad_words_ids return badwordsids = [ v for k, v in tokenizer.get_vocab().items() if any(c in str(k) for c in "[]") ] if tokenizer.pad_token_id in badwordsids: badwordsids.remove(tokenizer.pad_token_id) badwordsids.append(tokenizer.eos_token_id) def prepare_engine_payload( kai_payload: KAIGenerationInputSchema ) -> Tuple[SamplingParams, List[int]]: """Create SamplingParams and truncated input tokens for AsyncEngine""" if not kai_payload.genkey: kai_payload.genkey = f"kai-{random_uuid()}" kai_payload.top_k = kai_payload.top_k if kai_payload.top_k != 0.0 else -1 kai_payload.tfs = max(_SAMPLING_EPS, kai_payload.tfs) if kai_payload.temperature < _SAMPLING_EPS: kai_payload.n = 1 kai_payload.top_p = 1.0 kai_payload.top_k = -1 sampling_params = SamplingParams( n=kai_payload.n, best_of=kai_payload.n, repetition_penalty=kai_payload.rep_pen, temperature=kai_payload.temperature, smoothing_factor=kai_payload.smoothing_factor, smoothing_curve=kai_payload.smoothing_curve, tfs=kai_payload.tfs, top_p=kai_payload.top_p, top_k=kai_payload.top_k, top_a=kai_payload.top_a, min_p=kai_payload.min_p, typical_p=kai_payload.typical, eta_cutoff=kai_payload.eta_cutoff, epsilon_cutoff=kai_payload.eps_cutoff, stop=kai_payload.stop_sequence, include_stop_str_in_output=kai_payload.include_stop_str_in_output, custom_token_bans=badwordsids if kai_payload.use_default_badwordsids else [], max_tokens=kai_payload.max_length, seed=kai_payload.sampler_seed, xtc_probability=kai_payload.xtc_probability, xtc_threshold=kai_payload.xtc_threshold, ) max_input_tokens = max( 1, kai_payload.max_context_length - kai_payload.max_length) input_tokens = tokenizer(kai_payload.prompt).input_ids[-max_input_tokens:] return sampling_params, input_tokens @kai_api.post("/generate") async def generate(kai_payload: KAIGenerationInputSchema) -> JSONResponse: sampling_params, input_tokens = prepare_engine_payload(kai_payload) result_generator = async_engine_client.generate( { "prompt": kai_payload.prompt, "prompt_token_ids": input_tokens, }, sampling_params, kai_payload.genkey, ) final_res: RequestOutput = None previous_output = "" async for res in result_generator: final_res = res new_chunk = res.outputs[0].text[len(previous_output):] previous_output += new_chunk gen_cache[kai_payload.genkey] = previous_output assert final_res is not None del gen_cache[kai_payload.genkey] return JSONResponse( {"results": [{ "text": output.text } for output in final_res.outputs]}) @extra_api.post("/generate/stream") async def generate_stream( kai_payload: KAIGenerationInputSchema) -> StreamingResponse: sampling_params, input_tokens = prepare_engine_payload(kai_payload) results_generator = async_engine_client.generate( { "prompt": kai_payload.prompt, "prompt_token_ids": input_tokens, }, sampling_params, kai_payload.genkey, ) async def stream_kobold() -> AsyncGenerator[bytes, None]: previous_output = "" async for res in results_generator: new_chunk = res.outputs[0].text[len(previous_output):] previous_output += new_chunk yield b"event: message\n" yield f"data: {json.dumps({'token': new_chunk})}\n\n".encode() return StreamingResponse(stream_kobold(), headers={ "Cache-Control": "no-cache", "Connection": "keep-alive", }, media_type="text/event-stream") @extra_api.post("/generate/check") @extra_api.get("/generate/check") async def check_generation(request: Request): text = "" try: request_dict = await request.json() if "genkey" in request_dict and request_dict["genkey"] in gen_cache: text = gen_cache[request_dict["genkey"]] except json.JSONDecodeError: pass return JSONResponse({"results": [{"text": text}]}) @extra_api.post("/abort") async def abort_generation(request: Request): try: request_dict = await request.json() if "genkey" in request_dict: await async_engine_client.abort(request_dict["genkey"]) except json.JSONDecodeError: pass return JSONResponse({}) @extra_api.post("/tokencount") async def count_tokens(request: TokenizeRequest): """Tokenize string and return token count""" generator = await openai_serving_tokenization.create_tokenize(request) return JSONResponse({"value": generator.model_dump()["tokens"]}) @kai_api.get("/info/version") async def get_version(): """Impersonate KAI""" return JSONResponse({"result": "1.2.4"}) @kai_api.get("/model") async def get_model(): return JSONResponse({"result": f"aphrodite/{served_model_names[0]}"}) @kai_api.get("/config/soft_prompts_list") async def get_available_softprompts(): """Stub for compatibility""" return JSONResponse({"values": []}) @kai_api.get("/config/soft_prompt") async def get_current_softprompt(): """Stub for compatibility""" return JSONResponse({"value": ""}) @kai_api.put("/config/soft_prompt") async def set_current_softprompt(): """Stub for compatibility""" return JSONResponse({}) @kai_api.get("/config/max_length") async def get_max_length() -> JSONResponse: max_length = args.max_length return JSONResponse({"value": max_length}) @kai_api.get("/config/max_context_length") @extra_api.get("/true_max_context_length") async def get_max_context_length() -> JSONResponse: max_context_length = engine_args.max_model_len return JSONResponse({"value": max_context_length}) @extra_api.get("/preloadstory") async def get_preloaded_story() -> JSONResponse: """Stub for compatibility""" return JSONResponse({}) @extra_api.get("/version") async def get_extra_version(): """Impersonate KoboldCpp""" return JSONResponse({"result": "KoboldCpp", "version": "1.63"}) @router.get("/") async def get_kobold_lite_ui(): """Serves a cached copy of the Kobold Lite UI, loading it from disk on demand if needed. Can be disabled with SERVE_KOBOLD_LITE_UI=0.""" if not SERVE_KOBOLD_LITE_UI: return JSONResponse(content={"error": "Kobold Lite UI is disabled"}, status_code=404) global kobold_lite_ui if kobold_lite_ui == "": scriptpath = os.path.dirname(os.path.abspath(__file__)) klitepath = os.path.join(scriptpath, "../kobold/klite.embd") klitepath = os.path.normpath(klitepath) # Normalize the path if os.path.exists(klitepath): with open(klitepath, "r", encoding="utf-8") as f: kobold_lite_ui = f.read() else: logger.error("Kobold Lite UI not found at " + klitepath) return HTMLResponse(content=kobold_lite_ui) # ============ KoboldAI API ============ # def build_app(args: Namespace) -> FastAPI: app = FastAPI(lifespan=lifespan) app.include_router(router) app.root_path = args.root_path if args.launch_kobold_api: logger.warning("Kobold API is now enabled by default. " "This flag will be removed in the future.") app.include_router(kai_api, prefix="/api/v1") app.include_router(kai_api, prefix="/api/latest", include_in_schema=False) app.include_router(extra_api, prefix="/api/extra") mount_metrics(app) app.add_middleware( CORSMiddleware, allow_origins=args.allowed_origins, allow_credentials=args.allow_credentials, allow_methods=args.allowed_methods, allow_headers=args.allowed_headers, ) @app.exception_handler(RequestValidationError) async def validation_exception_handler(_, exc): err = openai_serving_completion.create_error_response(message=str(exc)) return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST) if token := os.environ.get("APHRODITE_API_KEY") or args.api_keys: admin_key = os.environ.get("APHRODITE_ADMIN_KEY") or args.admin_key if admin_key is None: logger.warning("Admin key not provided. Admin operations will " "be disabled.") @app.middleware("http") async def authentication(request: Request, call_next): if not request.url.path.startswith(("/v1", "/api")): return await call_next(request) # Browsers may send OPTIONS requests to check CORS headers # before sending the actual request. We should allow these # requests to pass through without authentication. # See https://github.com/PygmalionAI/aphrodite-engine/issues/434 if request.method == "OPTIONS": return await call_next(request) auth_header = request.headers.get("Authorization") api_key_header = request.headers.get("x-api-key") if request.url.path.startswith(("/v1/lora", "/v1/soft_prompt")): if admin_key is not None and api_key_header == admin_key: return await call_next(request) return JSONResponse(content={"error": "Unauthorized"}, status_code=401) if auth_header != "Bearer " + token and api_key_header != token: return JSONResponse(content={"error": "Unauthorized"}, status_code=401) return await call_next(request) for middleware in args.middleware: module_path, object_name = middleware.rsplit(".", 1) imported = getattr(importlib.import_module(module_path), object_name) if inspect.isclass(imported): app.add_middleware(imported) elif inspect.iscoroutinefunction(imported): app.middleware("http")(imported) else: raise ValueError(f"Invalid middleware {middleware}. " f"Must be a function or a class.") return app async def init_app( async_engine_client: AsyncEngineClient, args: Namespace, ) -> FastAPI: global api_server_args api_server_args = args app = build_app(args) logger.debug(f"args: {args}") global served_model_names if args.served_model_name is not None: served_model_names = args.served_model_name else: served_model_names = [args.model] if args.uvloop: uvloop.install() global tokenizer model_config = await async_engine_client.get_model_config() if args.disable_log_requests: request_logger = None else: request_logger = RequestLogger(max_log_len=args.max_log_len) global openai_serving_chat global openai_serving_completion global openai_serving_embedding global openai_serving_tokenization openai_serving_chat = OpenAIServingChat( async_engine_client, model_config, served_model_names, args.response_role, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, request_logger=request_logger, chat_template=args.chat_template, return_tokens_as_token_ids=args.return_tokens_as_token_ids, ) openai_serving_completion = OpenAIServingCompletion( async_engine_client, model_config, served_model_names, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, request_logger=request_logger, return_tokens_as_token_ids=args.return_tokens_as_token_ids, ) openai_serving_embedding = OpenAIServingEmbedding( async_engine_client, model_config, served_model_names, request_logger=request_logger, ) openai_serving_tokenization = OpenAIServingTokenization( async_engine_client, model_config, served_model_names, lora_modules=args.lora_modules, request_logger=request_logger, chat_template=args.chat_template, ) app.root_path = args.root_path tokenizer = get_tokenizer( tokenizer_name=engine_args.tokenizer, tokenizer_mode=engine_args.tokenizer_mode, trust_remote_code=engine_args.trust_remote_code, revision=engine_args.revision, ) if args.launch_kobold_api: _set_badwords(tokenizer, model_config.hf_config) return app async def run_server(args, **uvicorn_kwargs) -> None: async with build_async_engine_client(args) as async_engine_client: app = await init_app(async_engine_client, args) protocol = "https" if args.ssl_certfile else "http" root_path = args.root_path.rstrip("/") if args.root_path else "" host_name = args.host if args.host else "localhost" port_str = str(args.port) if SERVE_KOBOLD_LITE_UI: ui_url = f"{protocol}://{host_name}:{port_str}{root_path}/" logger.info(f"Kobold Lite UI: {ui_url}") logger.info(f"Documentation: {protocol}://{host_name}:{port_str}{root_path}/redoc") # noqa: E501 logger.info(f"Completions API: {protocol}://{host_name}:{port_str}{root_path}/v1/completions") # noqa: E501 logger.info(f"Chat API: {protocol}://{host_name}:{port_str}{root_path}/v1/chat/completions") # noqa: E501 logger.info(f"Embeddings API: {protocol}://{host_name}:{port_str}{root_path}/v1/embeddings") # noqa: E501 logger.info(f"Tokenization API: {protocol}://{host_name}:{port_str}{root_path}/v1/tokenize") # noqa: E501 shutdown_task = await serve_http( app, engine=async_engine_client, host=args.host, port=args.port, log_level=args.uvicorn_log_level, timeout_keep_alive=TIMEOUT_KEEP_ALIVE, ssl_keyfile=args.ssl_keyfile, ssl_certfile=args.ssl_certfile, ssl_ca_certs=args.ssl_ca_certs, ssl_cert_reqs=args.ssl_cert_reqs, **uvicorn_kwargs, ) # NB: Await server shutdown only after the backend context is exited await shutdown_task if __name__ == "__main__": # NOTE: # This section should be in sync with aphrodite/endpoints/cli.py # for CLI entrypoints. parser = FlexibleArgumentParser( description="Aphrodite OpenAI-Compatible RESTful API Server") parser = make_arg_parser(parser) args = parser.parse_args() asyncio.run(run_server(args))