#include "cache.h" #include "cuda_utils.h" #include "ops.h" #include "core/registration.h" #include "quantization/quant_ops.h" #include // Note on op signatures: // The X_meta signatures are for the meta functions corresponding to op X. // They must be kept in sync with the signature for X. Generally, only // functions that return Tensors require a meta function. // // See the following links for detailed docs on op registration and function // schemas. // https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU/edit#heading=h.ptttacy8y1u9 // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/README.md#annotations TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) { // Aphrodite custom ops // Attention ops // Compute the attention between an input query and the cached // keys/values using PagedAttention. ops.def( "paged_attention_v1(" " Tensor! out, Tensor query, Tensor key_cache," " Tensor value_cache, int num_kv_heads, float scale," " Tensor block_tables, Tensor seq_lens, int block_size," " int max_seq_len, Tensor? alibi_slopes," " str kv_cache_dtype, float k_scale, float v_scale," " int tp_rank, int blocksparse_local_blocks," " int blocksparse_vert_stride, int blocksparse_block_size," " int blocksparse_head_sliding_step) -> ()"); ops.impl("paged_attention_v1", torch::kCUDA, &paged_attention_v1); // PagedAttention V2. ops.def( "paged_attention_v2(" " Tensor! out, Tensor exp_sums, Tensor max_logits," " Tensor tmp_out, Tensor query, Tensor key_cache," " Tensor value_cache, int num_kv_heads, float scale," " Tensor block_tables, Tensor seq_lens, int block_size," " int max_seq_len, Tensor? alibi_slopes," " str kv_cache_dtype, float k_scale, float v_scale," " int tp_rank, int blocksparse_local_blocks," " int blocksparse_vert_stride, int blocksparse_block_size," " int blocksparse_head_sliding_step) -> ()"); ops.impl("paged_attention_v2", torch::kCUDA, &paged_attention_v2); // Activation ops // Activation function used in SwiGLU. ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()"); ops.impl("silu_and_mul", torch::kCUDA, &silu_and_mul); // Activation function used in GeGLU with `none` approximation. ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul); // Activation function used in GeGLU with `tanh` approximation. ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul); // GELU implementation used in GPT-2. ops.def("gelu_new(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_new", torch::kCUDA, &gelu_new); // Approximate GELU implementation. ops.def("gelu_fast(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_fast", torch::kCUDA, &gelu_fast); // Quick GELU implementation. ops.def("gelu_quick(Tensor! out, Tensor input) -> ()"); ops.impl("gelu_quick", torch::kCUDA, &gelu_quick); // prepare_inputs advance_step ops.def("advance_step", &advance_step); ops.impl("advance_step", torch::kCUDA, &advance_step); // Layernorm // Apply Root Mean Square (RMS) Normalization to the input tensor. ops.def( "rms_norm(Tensor! out, Tensor input, Tensor weight, float epsilon) -> " "()"); ops.impl("rms_norm", torch::kCUDA, &rms_norm); // In-place fused Add and RMS Normalization. ops.def( "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, " "float epsilon) -> ()"); ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm); // Rotary embedding // Apply GPT-NeoX or GPT-J style rotary embedding to query and key. ops.def( "rotary_embedding(Tensor positions, Tensor! query," " Tensor! key, int head_size," " Tensor cos_sin_cache, bool is_neox) -> ()"); ops.impl("rotary_embedding", torch::kCUDA, &rotary_embedding); // Apply GPT-NeoX or GPT-J style rotary embedding to query and key // (supports multiple loras). ops.def( "batched_rotary_embedding(Tensor positions, Tensor! query," " Tensor! key, int head_size," " Tensor cos_sin_cache, bool is_neox," " int rot_dim," " Tensor cos_sin_cache_offsets) -> ()"); ops.impl("batched_rotary_embedding", torch::kCUDA, &batched_rotary_embedding); // Quantization ops #ifndef USE_ROCM // Quantized GEMM for AQLM. ops.def("aqlm_gemm", &aqlm_gemm); ops.impl("aqlm_gemm", torch::kCUDA, &aqlm_gemm); // Decompression method for AQLM. ops.def("aqlm_dequant", &aqlm_dequant); ops.impl("aqlm_dequant", torch::kCUDA, &aqlm_dequant); // Quantized GEMM for AWQ. ops.def("awq_gemm", &awq_gemm); ops.impl("awq_gemm", torch::kCUDA, &awq_gemm); // Dequantization for AWQ. ops.def("awq_dequantize", &awq_dequantize); ops.impl("awq_dequantize", torch::kCUDA, &awq_dequantize); // Dequantization for GGML. ops.def("ggml_dequantize", &ggml_dequantize); ops.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize); // mmvq kernel for GGML. ops.def("ggml_mul_mat_vec_a8", &ggml_mul_mat_vec_a8); ops.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8); // mmq kernel for GGML. ops.def("ggml_mul_mat_a8", &ggml_mul_mat_a8); ops.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8); // Marlin (Dense) Optimized Quantized GEMM for GPTQ. ops.def("marlin_gemm", &marlin_gemm); ops.impl("marlin_gemm", torch::kCUDA, &marlin_gemm); // Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ. ops.def("gptq_marlin_24_gemm", &gptq_marlin_24_gemm); ops.impl("gptq_marlin_24_gemm", torch::kCUDA, &gptq_marlin_24_gemm); // gptq_marlin Optimized Quantized GEMM for GPTQ. ops.def("gptq_marlin_gemm", &gptq_marlin_gemm); ops.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm); // gptq_marlin repack from GPTQ. ops.def("gptq_marlin_repack", &gptq_marlin_repack); ops.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack); // awq_marlin repack from AWQ. ops.def("awq_marlin_repack", &awq_marlin_repack); ops.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack); // fp8_marlin Optimized Quantized GEMM for FP8 weight-only. ops.def("fp8_marlin_gemm", &fp8_marlin_gemm); ops.impl("fp8_marlin_gemm", torch::kCUDA, &fp8_marlin_gemm); // marlin_qqq_gemm for QQQ. ops.def("marlin_qqq_gemm", &marlin_qqq_gemm); ops.impl("marlin_qqq_gemm", torch::kCUDA, &marlin_qqq_gemm); // CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column // quantization. ops.def( "cutlass_scaled_mm(Tensor! out, Tensor a," " Tensor b, Tensor a_scales," " Tensor b_scales, Tensor? bias) -> ()"); ops.impl("cutlass_scaled_mm", torch::kCUDA, &cutlass_scaled_mm); // Check if cutlass scaled_mm is supported for CUDA devices of the given // capability ops.def("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8); ops.impl("cutlass_scaled_mm_supports_fp8", torch::kCUDA, &cutlass_scaled_mm_supports_fp8); // CUTLASS w8a8 GEMM, supporting asymmetric per-tensor or per-row/column // quantization. ops.def( "cutlass_scaled_mm_azp(Tensor! out, Tensor a," " Tensor b, Tensor a_scales," " Tensor b_scales, Tensor azp_adj," " Tensor? azp, Tensor? bias) -> ()"); ops.impl("cutlass_scaled_mm_azp", torch::kCUDA, &cutlass_scaled_mm_azp); // QuIP# GEMV ops.def("quip_gemv", &e8p_mm_origorder); ops.impl("quip_gemv", torch::kCUDA, &e8p_mm_origorder); // QuIP# Decompress ops.def("quip_decompress", &decompress_e8p_origorder); ops.impl("quip_decompress", torch::kCUDA, &decompress_e8p_origorder); // fp6_llm ops.def( "fp_eXmY_linear_forward_cuda(int EXPONENT, int MANTISSA," " Tensor _in_feats, Tensor _weights," " Tensor _scales, int splitK=1) -> Tensor"); ops.impl("fp_eXmY_linear_forward_cuda", torch::kCUDA, &fp_eXmY_linear_forward_cuda); #endif // Quantized GEMM for GPTQ. ops.def("gptq_gemm", &gptq_gemm); ops.impl("gptq_gemm", torch::kCUDA, &gptq_gemm); // Post processing for GPTQ. ops.def("gptq_shuffle(Tensor! q_weight, Tensor q_perm, int bit) -> ()"); ops.impl("gptq_shuffle", torch::kCUDA, &gptq_shuffle); // Quantized GEMM for SqueezeLLM. ops.def( "squeezellm_gemm(Tensor vec, Tensor mat, Tensor! mul, Tensor " "lookup_table) -> ()"); ops.impl("squeezellm_gemm", torch::kCUDA, &squeezellm_gemm); // Compute FP8 quantized tensor for given scaling factor. ops.def( "static_scaled_fp8_quant(Tensor! out, Tensor input, Tensor scale) -> ()"); ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant); // Compute dynamic-per-tensor FP8 quantized tensor and scaling factor. ops.def( "dynamic_scaled_fp8_quant(Tensor! out, Tensor input, Tensor! scale) -> " "()"); ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant); // Compute dynamic-per-token FP8 quantized tensor and scaling factor. ops.def( "dynamic_per_token_scaled_fp8_quant(Tensor! out, Tensor input, Tensor! " "scale, Tensor? scale_ub) -> " "()"); ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA, &dynamic_per_token_scaled_fp8_quant); // Aligning the number of tokens to be processed by each expert such // that it is divisible by the block size. ops.def( "moe_align_block_size(Tensor topk_ids, int num_experts," " int block_size, Tensor! sorted_token_ids," " Tensor! experts_ids," " Tensor! num_tokens_post_pad) -> ()"); ops.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size); // Compute int8 quantized tensor for given scaling factor. /* Implementation: void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor const& scale); */ ops.def( "static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale) -> " "()"); ops.impl("static_scaled_int8_quant", torch::kCUDA, &static_scaled_int8_quant); // Compute int8 quantized tensor and scaling factor /* Implementation: void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input, torch::Tensor& scales); */ ops.def( "dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale) -> " "()"); ops.impl("dynamic_scaled_int8_quant", torch::kCUDA, &dynamic_scaled_int8_quant); #ifndef USE_ROCM // Mamba kernels ops.def( "selective_scan_fwd(Tensor! u, Tensor! delta," "Tensor! A, Tensor! B, Tensor! C," "Tensor? D_, Tensor? z_, Tensor? delta_bias_," "bool delta_softplus," "Tensor? index_, Tensor? x) -> Tensor[]"); ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd); ops.def( "causal_conv1d_update(Tensor! x," "Tensor! conv_state," "Tensor! weight," "Tensor? bias_," "bool silu_activation) -> Tensor"); ops.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update); ops.def( "causal_conv1d_fwd(Tensor! x, Tensor! weight," "Tensor? bias_," "Tensor? seq_idx_," "Tensor? seq_pos_idx_," "Tensor? initial_states_," "Tensor? final_states_out_," "bool silu_activation) -> Tensor"); ops.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd); #endif } TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) { // Cache ops // Swap in (out) the cache blocks from src to dst. cache_ops.def( "swap_blocks(Tensor src, Tensor! dst, Tensor block_mapping) -> ()"); cache_ops.impl("swap_blocks", torch::kCUDA, &swap_blocks); // Copy the cache blocks from src to dst. cache_ops.def( "copy_blocks(Tensor[]! key_caches, Tensor[]! value_caches, Tensor " "block_mapping) -> ()"); cache_ops.impl("copy_blocks", torch::kCUDA, ©_blocks); // Reshape the key and value tensors and cache them. cache_ops.def( "reshape_and_cache(Tensor key, Tensor value," " Tensor! key_cache, Tensor! value_cache," " Tensor slot_mapping," " str kv_cache_dtype," " float k_scale, float v_scale) -> ()"); cache_ops.impl("reshape_and_cache", torch::kCUDA, &reshape_and_cache); // Reshape the key and value tensors and cache them. cache_ops.def( "reshape_and_cache_flash(Tensor key, Tensor value," " Tensor! key_cache," " Tensor! value_cache," " Tensor slot_mapping," " str kv_cache_dtype," " float k_scale, float v_scale) -> ()"); cache_ops.impl("reshape_and_cache_flash", torch::kCUDA, &reshape_and_cache_flash); // Convert the key and value cache to fp8 data type. cache_ops.def( "convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, str " "kv_cache_dtype) -> ()"); cache_ops.impl("convert_fp8", torch::kCUDA, &convert_fp8); } TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) { // Cuda utils // Gets the specified device attribute. cuda_utils.def("get_device_attribute", &get_device_attribute); cuda_utils.impl("get_device_attribute", torch::kCUDA, &get_device_attribute); // Gets the maximum shared memory per block device attribute. cuda_utils.def("get_max_shared_memory_per_block_device_attribute", &get_max_shared_memory_per_block_device_attribute); cuda_utils.impl("get_max_shared_memory_per_block_device_attribute", torch::kCUDA, &get_max_shared_memory_per_block_device_attribute); } #ifndef USE_ROCM TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _custom_ar), custom_ar) { // Custom all-reduce kernels custom_ar.def("init_custom_ar", &init_custom_ar); custom_ar.impl("init_custom_ar", torch::kCUDA, &init_custom_ar); custom_ar.def("should_custom_ar", &should_custom_ar); custom_ar.impl("should_custom_ar", torch::kCUDA, &should_custom_ar); custom_ar.def("all_reduce_reg(int fa, Tensor inp, Tensor! out) -> ()"); custom_ar.impl("all_reduce_reg", torch::kCUDA, &all_reduce_reg); custom_ar.def( "all_reduce_unreg(int fa, Tensor inp, Tensor reg_buffer, Tensor! out) -> " "()"); custom_ar.impl("all_reduce_unreg", torch::kCUDA, &all_reduce_unreg); custom_ar.def("dispose", &dispose); custom_ar.impl("dispose", torch::kCPU, &dispose); custom_ar.def("meta_size", &meta_size); custom_ar.impl("meta_size", torch::kCPU, &meta_size); custom_ar.def("register_buffer", ®ister_buffer); custom_ar.impl("register_buffer", torch::kCUDA, ®ister_buffer); custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta); custom_ar.impl("get_graph_buffer_ipc_meta", torch::kCPU, &get_graph_buffer_ipc_meta); custom_ar.def("register_graph_buffers", ®ister_graph_buffers); custom_ar.impl("register_graph_buffers", torch::kCPU, ®ister_graph_buffers); } #endif REGISTER_EXTENSION(TORCH_EXTENSION_NAME)