"""Benchmark online serving throughput. On the server side, run one of the following commands: (Aphrodite backend) python -m aphrodite.endpoints.openai.api_server \ --model --swap-space 16 \ --disable-log-requests (TGI backend) ./launch_tgi_server.sh On the client side, run: python tests/benchmarks/serving.py \ --backend \ --tokenizer --dataset \ --request-rate """ import argparse import asyncio import json import random import time from dataclasses import dataclass from datetime import datetime from typing import AsyncGenerator, List, Tuple import numpy as np from tqdm.asyncio import tqdm from transformers import PreTrainedTokenizerBase from aphrodite.transformers_utils.tokenizer import get_tokenizer from backend_request_func import ( ASYNC_REQUEST_FUNCS, RequestFuncInput, RequestFuncOutput, ) @dataclass class BenchmarkMetrics: completed: int total_input: int total_output: int request_throughput: float input_throughput: float output_throughput: float mean_ttft_ms: float median_ttft_ms: float p99_ttft_ms: float mean_tpot_ms: float median_tpot_ms: float p99_tpot_ms: float def sample_requests( dataset_path: str, num_requests: int, tokenizer: PreTrainedTokenizerBase, ) -> List[Tuple[str, int, int]]: # Load the dataset. with open(dataset_path) as f: dataset = json.load(f) # Filter out the conversations with less than 2 turns. dataset = [data for data in dataset if len(data["conversations"]) >= 2] # Only keep the first two turns of each conversation. dataset = [(data["conversations"][0]["value"], data["conversations"][1]["value"]) for data in dataset] # some of these will be filtered out, so sample more than we need sampled_indices = random.sample(range(len(dataset)), int(num_requests * 1.2)) dataset = [dataset[i] for i in sampled_indices] # Tokenize the prompts and completions. prompts = [prompt for prompt, _ in dataset] prompt_token_ids = tokenizer(prompts).input_ids completions = [completion for _, completion in dataset] completion_token_ids = tokenizer(completions).input_ids tokenized_dataset = [] for i in range(len(dataset)): output_len = len(completion_token_ids[i]) tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len)) # Filter out too long sequences. filtered_dataset: List[Tuple[str, int, int]] = [] for prompt, prompt_token_ids, output_len in tokenized_dataset: prompt_len = len(prompt_token_ids) if prompt_len < 4 or output_len < 4: # Prune too short sequences. # This is because TGI causes errors when the input or output length # is too short. continue if prompt_len > 1024 or prompt_len + output_len > 2048: # Prune too long sequences. continue filtered_dataset.append((prompt, prompt_len, output_len)) # Sample the requests. sampled_requests = random.sample(filtered_dataset, num_requests) return sampled_requests async def get_request( input_requests: List[Tuple[str, int, int]], request_rate: float, ) -> AsyncGenerator[Tuple[str, int, int], None]: input_requests = iter(input_requests) for request in input_requests: yield request if request_rate == float("inf"): # If the request rate is infinity, then we don't need to wait. continue # Sample the request interval from the exponential distribution. interval = np.random.exponential(1.0 / request_rate) # The next request will be sent after the interval. await asyncio.sleep(interval) def calculate_metrics( input_requests: List[Tuple[str, int, int]], outputs: List[RequestFuncOutput], dur_s: float, tokenizer: PreTrainedTokenizerBase, ) -> BenchmarkMetrics: total_output = 0 total_input = 0 completed = 0 per_token_latencies = [] ttfts = [] for i in range(len(outputs)): if outputs[i].success: output_len = len(tokenizer.encode(outputs[i].generated_text)) total_output += output_len total_input += input_requests[i][1] per_token_latencies.append(outputs[i].latency / output_len) ttfts.append(outputs[i].ttft) completed += 1 metrics = BenchmarkMetrics( completed=completed, total_input=total_input, total_output=total_output, request_throughput=completed / dur_s, input_throughput=total_input / dur_s, output_throughput=total_output / dur_s, mean_ttft_ms=np.mean(ttfts) * 1000, median_ttft_ms=np.median(ttfts) * 1000, p99_ttft_ms=np.percentile(ttfts, 99) * 1000, mean_tpot_ms=np.mean(per_token_latencies) * 1000, median_tpot_ms=np.median(per_token_latencies) * 1000, p99_tpot_ms=np.percentile(per_token_latencies, 99) * 1000, ) return metrics async def benchmark( backend: str, api_url: str, model_id: str, tokenizer: PreTrainedTokenizerBase, input_requests: List[Tuple[str, int, int]], best_of: int, use_beam_search: bool, request_rate: float, disable_tqdm: bool, ): if backend in ASYNC_REQUEST_FUNCS: request_func = ASYNC_REQUEST_FUNCS.get(backend) else: raise ValueError(f"Unknown backend: {backend}") pbar = None if disable_tqdm else tqdm(total=len(input_requests)) print(f"Traffic request rate: {request_rate}") benchmark_start_time = time.perf_counter() tasks = [] async for request in get_request(input_requests, request_rate): prompt, prompt_len, output_len = request request_func_input = RequestFuncInput( model=model_id, prompt=prompt, api_url=api_url, prompt_len=prompt_len, output_len=output_len, best_of=best_of, use_beam_search=use_beam_search, ) tasks.append( asyncio.create_task( request_func(request_func_input=request_func_input, pbar=pbar))) outputs = await asyncio.gather(*tasks) if not disable_tqdm: pbar.close() benchmark_duration = time.perf_counter() - benchmark_start_time metrics = calculate_metrics( input_requests=input_requests, outputs=outputs, dur_s=benchmark_duration, tokenizer=tokenizer, ) print(f"Successful requests: {metrics.completed}") print(f"Benchmark duration: {benchmark_duration:2f} s") print(f"Total input tokens: {metrics.total_input}") print(f"Total generated tokens: {metrics.total_output}") print(f"Request throughput: {metrics.request_throughput:.2f} requests/s") print(f"Input token throughput: {metrics.input_throughput:.2f} tokens/s") print(f"Output token throughput: {metrics.output_throughput:.2f} tokens/s") print(f"Mean TTFT: {metrics.mean_ttft_ms:.2f} ms") print(f"Median TTFT: {metrics.median_ttft_ms:.2f} ms") print(f"P99 TTFT: {metrics.p99_ttft_ms:.2f} ms") print(f"Mean TPOT: {metrics.mean_tpot_ms:.2f} ms") print(f"Median TPOT: {metrics.median_tpot_ms:.2f} ms") print(f"P99 TPOT: {metrics.p99_tpot_ms:.2f} ms") result = { "duration": benchmark_duration, "completed": metrics.completed, "total_input_tokens": metrics.total_input, "total_output_tokens": metrics.total_output, "request_inthroughput": metrics.request_throughput, "input_throughput": metrics.input_throughput, "output_throughput": metrics.output_throughput, "mean_ttft_ms": metrics.mean_ttft_ms, "median_ttft_ms": metrics.median_ttft_ms, "p99_ttft_ms": metrics.p99_ttft_ms, "mean_tpot_ms": metrics.mean_tpot_ms, "median_tpot_ms": metrics.median_tpot_ms, "p99_tpot_ms": metrics.p99_tpot_ms } return result def main(args: argparse.Namespace): print(args) random.seed(args.seed) np.random.seed(args.seed) backend = args.backend model_id = args.model tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model if args.base_url is not None: api_url = f"{args.base_url}{args.endpoint}" else: api_url = f"http://{args.host}:{args.port}{args.endpoint}" tokenizer = get_tokenizer(tokenizer_id, trust_remote_code=args.trust_remote_code) input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer) benchmark_result = asyncio.run( benchmark( backend=backend, api_url=api_url, model_id=model_id, tokenizer=tokenizer, input_requests=input_requests, best_of=args.best_of, use_beam_search=args.use_beam_search, request_rate=args.request_rate, disable_tqdm=args.disable_tqdm, )) # Save config and results to json if args.save_result: result_json = {} # Setup current_dt = datetime.now().strftime("%Y%m%d-%H%M%S") result_json["date"] = current_dt result_json["backend"] = backend result_json["version"] = args.version result_json["model_id"] = model_id result_json["tokenizer_id"] = tokenizer_id result_json["best_of"] = args.best_of result_json["use_beam_search"] = args.use_beam_search result_json["num_prompts"] = args.num_prompts # Traffic result_json["request_rate"] = ( args.request_rate if args.request_rate < float("inf") else "inf") # Merge with benchmark result result_json = {**result_json, **benchmark_result} # Save to file base_model_id = model_id.split("/")[-1] file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-" f"{current_dt}.json" with open(file_name, "w") as outfile: json.dump(result_json, outfile) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Benchmark the online serving throughput.") parser.add_argument( "--backend", type=str, default="aphrodite", choices=list(ASYNC_REQUEST_FUNCS.keys()), ) parser.add_argument( "--version", type=str, default="N/A", help="Version of the serving backend/engine.", ) parser.add_argument( "--base-url", type=str, default=None, help="Server or API base url if not using http host and port.", ) parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--port", type=int, default=2242) parser.add_argument( "--endpoint", type=str, default="/v1/completions", help="API endpoint.", ) parser.add_argument("--dataset", type=str, required=True, help="Path to the dataset.") parser.add_argument( "--model", type=str, required=True, help="Name of the model.", ) parser.add_argument( "--tokenizer", type=str, help="Name or path of the tokenizer, if not using the default model " "tokenizer.", ) parser.add_argument( "--best-of", type=int, default=1, help="Generates `best_of` sequences per prompt and " "returns the best one.", ) parser.add_argument("--use-beam-search", action="store_true") parser.add_argument( "--num-prompts", type=int, default=1000, help="Number of prompts to process.", ) parser.add_argument( "--request-rate", type=float, default=float("inf"), help="Number of requests per second. If this is inf, " "then all the requests are sent at time 0. " "Otherwise, we use Poisson process to synthesize " "the request arrival times.", ) parser.add_argument("--seed", type=int, default=0) parser.add_argument( "--trust-remote-code", action="store_true", help="Trust remote code from huggingface", ) parser.add_argument( "--disable-tqdm", action="store_true", help="Specify to disable tqdm progress bar.", ) parser.add_argument( "--save-result", action="store_true", help="Specify to save benchmark results to a json file", ) args = parser.parse_args() main(args)