#include "cpu_types.hpp" namespace { template void rotary_embedding_impl( const int64_t *__restrict__ positions, // [batch_size, seq_len] or [num_tokens] scalar_t *__restrict__ query, /// [batch_size, seq_len, num_heads, head_size] or /// [num_tokens, num_heads, head_size] scalar_t *__restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or // [num_tokens, num_kv_heads, head_size] const scalar_t *__restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2] const int rot_dim, const int64_t query_stride, const int64_t key_stride, const int num_heads, const int num_kv_heads, const int head_size, const int num_tokens) { using scalar_vec_t = vec_op::vec_t; constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num(); constexpr int ELEM_SIZE = sizeof(scalar_t); const int embed_dim = rot_dim / 2; TORCH_CHECK(embed_dim % VEC_ELEM_NUM == 0); #pragma omp parallel for for (int token_idx = 0; token_idx < num_tokens; ++token_idx) { int64_t pos = positions[token_idx]; const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim; for (int i = 0; i < num_heads; ++i) { const int head_idx = i; const int64_t token_head = token_idx * query_stride + head_idx * head_size; for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) { const int rot_offset = j; const int x_index = rot_offset; const int y_index = embed_dim + rot_offset; const int64_t out_x = token_head + x_index; const int64_t out_y = token_head + y_index; const scalar_vec_t cos(cache_ptr + x_index); const scalar_vec_t sin(cache_ptr + y_index); const scalar_vec_t q_x(query + out_x); const scalar_vec_t q_y(query + out_y); vec_op::FP32Vec8 fp32_cos(cos); vec_op::FP32Vec8 fp32_sin(sin); vec_op::FP32Vec8 fp32_q_x(q_x); vec_op::FP32Vec8 fp32_q_y(q_y); auto out1 = fp32_q_x * fp32_cos - fp32_q_y * fp32_sin; scalar_vec_t(out1).save(query + out_x); auto out2 = fp32_q_y * fp32_cos + fp32_q_x * fp32_sin; scalar_vec_t(out2).save(query + out_y); } } for (int i = 0; i < num_kv_heads; ++i) { const int head_idx = i; const int64_t token_head = token_idx * key_stride + head_idx * head_size; for (int j = 0; j < embed_dim; j += VEC_ELEM_NUM) { const int rot_offset = j; const int x_index = rot_offset; const int y_index = embed_dim + rot_offset; const int64_t out_x = token_head + x_index; const int64_t out_y = token_head + y_index; const scalar_vec_t cos(cache_ptr + x_index); const scalar_vec_t sin(cache_ptr + y_index); const scalar_vec_t k_x(key + out_x); const scalar_vec_t k_y(key + out_y); vec_op::FP32Vec8 fp32_cos(cos); vec_op::FP32Vec8 fp32_sin(sin); vec_op::FP32Vec8 fp32_k_x(k_x); vec_op::FP32Vec8 fp32_k_y(k_y); auto out1 = fp32_k_x * fp32_cos - fp32_k_y * fp32_sin; scalar_vec_t(out1).save(key + out_x); auto out2 = fp32_k_y * fp32_cos + fp32_k_x * fp32_sin; scalar_vec_t(out2).save(key + out_y); } } } } template void rotary_embedding_gptj_impl( const int64_t *__restrict__ positions, // [batch_size, seq_len] or [num_tokens] scalar_t *__restrict__ query, /// [batch_size, seq_len, num_heads, head_size] or /// [num_tokens, num_heads, head_size] scalar_t *__restrict__ key, // [batch_size, seq_len, num_kv_heads, head_size] or // [num_tokens, num_kv_heads, head_size] const scalar_t *__restrict__ cos_sin_cache, // [max_position, 2, rot_dim // 2] const int rot_dim, const int64_t query_stride, const int64_t key_stride, const int num_heads, const int num_kv_heads, const int head_size, const int num_tokens) { const int embed_dim = rot_dim / 2; #pragma omp parallel for collapse(2) for (int token_idx = 0; token_idx < num_tokens; ++token_idx) { for (int i = 0; i < num_heads; ++i) { int64_t pos = positions[token_idx]; const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim; const scalar_t *cos_cache_ptr = cache_ptr; const scalar_t *sin_cache_ptr = cache_ptr + embed_dim; const int head_idx = i; const int64_t token_head = token_idx * query_stride + head_idx * head_size; scalar_t *head_query = token_head + query; for (int j = 0; j < embed_dim; j += 1) { const int rot_offset = j; const int x_index = 2 * rot_offset; const int y_index = 2 * rot_offset + 1; const float cos = cos_cache_ptr[rot_offset]; const float sin = sin_cache_ptr[rot_offset]; const float x = head_query[x_index]; const float y = head_query[y_index]; head_query[x_index] = x * cos - y * sin; head_query[y_index] = y * cos + x * sin; } } } #pragma omp parallel for collapse(2) for (int token_idx = 0; token_idx < num_tokens; ++token_idx) { for (int i = 0; i < num_kv_heads; ++i) { int64_t pos = positions[token_idx]; const scalar_t *cache_ptr = cos_sin_cache + pos * rot_dim; const scalar_t *cos_cache_ptr = cache_ptr; const scalar_t *sin_cache_ptr = cache_ptr + embed_dim; const int head_idx = i; const int64_t token_head = token_idx * key_stride + head_idx * head_size; scalar_t *head_key = key + token_head; for (int j = 0; j < embed_dim; j += 1) { const int rot_offset = j; const int x_index = 2 * rot_offset; const int y_index = 2 * rot_offset + 1; const float cos = cos_cache_ptr[rot_offset]; const float sin = sin_cache_ptr[rot_offset]; const float x = head_key[x_index]; const float y = head_key[y_index]; head_key[x_index] = x * cos - y * sin; head_key[y_index] = y * cos + x * sin; } } } } }; // namespace void rotary_embedding(torch::Tensor &positions, torch::Tensor &query, torch::Tensor &key, int head_size, torch::Tensor &cos_sin_cache, bool is_neox) { int num_tokens = query.numel() / query.size(-1); int rot_dim = cos_sin_cache.size(1); int num_heads = query.size(-1) / head_size; int num_kv_heads = key.size(-1) / head_size; int64_t key_stride = key.stride(-2); int64_t query_stride = query.stride(-2); APHRODITE_DISPATCH_FLOATING_TYPES( query.scalar_type(), "rotary_embedding_impl", [&] { CPU_KERNEL_GUARD_IN(rotary_embedding_impl) if (is_neox) { rotary_embedding_impl( positions.data_ptr(), query.data_ptr(), key.data_ptr(), cos_sin_cache.data_ptr(), rot_dim, query_stride, key_stride, num_heads, num_kv_heads, head_size, num_tokens); } else { rotary_embedding_gptj_impl( positions.data_ptr(), query.data_ptr(), key.data_ptr(), cos_sin_cache.data_ptr(), rot_dim, query_stride, key_stride, num_heads, num_kv_heads, head_size, num_tokens); } CPU_KERNEL_GUARD_OUT(rotary_embedding_impl) }); }