# coding=utf-8 # Adapted from # https://github.com/THUDM/ChatGLM2-6B from transformers import PretrainedConfig class ChatGLMConfig(PretrainedConfig): model_type = "chatglm" attribute_map = { "num_hidden_layers": "num_layers", "n_head_kv": "multi_query_group_num", } def __init__(self, num_layers=28, padded_vocab_size=65024, hidden_size=4096, ffn_hidden_size=13696, kv_channels=128, num_attention_heads=32, seq_length=2048, hidden_dropout=0.0, attention_dropout=0.0, layernorm_epsilon=1e-5, rmsnorm=True, apply_residual_connection_post_layernorm=False, post_layer_norm=True, add_bias_linear=False, add_qkv_bias=False, interleaved_qkv=False, bias_dropout_fusion=True, multi_query_attention=False, multi_query_group_num=1, apply_query_key_layer_scaling=True, attention_softmax_in_fp32=True, fp32_residual_connection=False, quantization_bit=0, pre_seq_len=None, prefix_projection=False, **kwargs): self.num_layers = num_layers self.vocab_size = padded_vocab_size self.padded_vocab_size = padded_vocab_size self.hidden_size = hidden_size self.ffn_hidden_size = ffn_hidden_size self.kv_channels = kv_channels self.num_attention_heads = num_attention_heads self.seq_length = seq_length self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.layernorm_epsilon = layernorm_epsilon self.rmsnorm = rmsnorm self.apply_residual_connection_post_layernorm = ( apply_residual_connection_post_layernorm) self.post_layer_norm = post_layer_norm self.add_bias_linear = add_bias_linear self.add_qkv_bias = add_qkv_bias self.bias_dropout_fusion = bias_dropout_fusion self.multi_query_attention = multi_query_attention self.multi_query_group_num = multi_query_group_num self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.attention_softmax_in_fp32 = attention_softmax_in_fp32 self.fp32_residual_connection = fp32_residual_connection self.quantization_bit = quantization_bit self.pre_seq_len = pre_seq_len self.prefix_projection = prefix_projection self.interleaved_qkv = interleaved_qkv super().__init__(**kwargs)