import itertools import random from array import array from dataclasses import dataclass from typing import Dict, List, Optional, Tuple from unittest.mock import Mock, patch import pytest import torch from transformers import GenerationConfig, GenerationMixin from aphrodite.common.sequence import (SamplingParams, SequenceData, SequenceGroupMetadata) from aphrodite.common.utils import Counter, is_pin_memory_available from aphrodite.constants import APHRODITE_TOKEN_ID_ARRAY_TYPE from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.modeling.utils import set_random_seed class MockLogitsSampler(Sampler): def __init__(self, fake_logits: torch.Tensor): super().__init__() self.fake_logits = fake_logits def forward(self, *args, **kwargs): return super().forward(*args, **kwargs) def _prepare_test( batch_size: int ) -> Tuple[torch.Tensor, torch.Tensor, MockLogitsSampler]: input_tensor = torch.rand((batch_size, 1024), dtype=torch.float16) fake_logits = torch.full((batch_size, VOCAB_SIZE), 1e-2, dtype=input_tensor.dtype) sampler = MockLogitsSampler(fake_logits) return input_tensor, fake_logits, sampler VOCAB_SIZE = 32000 RANDOM_SEEDS = list(range(128)) CUDA_DEVICES = [ f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) ] def _do_sample( batch_size: int, input_tensor: torch.Tensor, sampler: MockLogitsSampler, sampling_params: SamplingParams, device: str, ): seq_group_metadata_list: List[SequenceGroupMetadata] = [] seq_lens: List[int] = [] for i in range(batch_size): seq_group_metadata_list.append( SequenceGroupMetadata( request_id=f"test_{i}", is_prompt=True, seq_data={ 0: SequenceData(array( APHRODITE_TOKEN_ID_ARRAY_TYPE, [1, 2, 3])) }, sampling_params=sampling_params, block_tables={0: [1]}, )) seq_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len()) sampling_metadata = SamplingMetadata.prepare( seq_group_metadata_list, seq_lens, query_lens=seq_lens, device=device, pin_memory=is_pin_memory_available()) return sampler(logits=input_tensor, sampling_metadata=sampling_metadata) @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_all_greedy(seed: int, device: str): set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) input_tensor, fake_logits, sampler = _prepare_test(batch_size) sampling_params = SamplingParams(temperature=0) sampler_output = _do_sample(batch_size, fake_logits, sampler, sampling_params, device) expected = torch.argmax(fake_logits, dim=-1) for i, sequence_output in enumerate(sampler_output): for nth_output in sequence_output.samples: assert nth_output.output_token == expected[i].item() @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_all_random(seed: int, device: str): set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) _, fake_logits, sampler = _prepare_test(batch_size) for i in range(batch_size): fake_logits[i, i] = 1e2 sampling_params = SamplingParams( temperature=1.0, n=random.randint(1, 10), ) sampler_output = _do_sample(batch_size, fake_logits, sampler, sampling_params, device) for i, sequence_output in enumerate(sampler_output): for nth_output in sequence_output.samples: assert nth_output.output_token == i @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_all_random_seed(seed: int, device: str): set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) _, fake_logits, sampler = _prepare_test(batch_size) for i in range(batch_size): fake_logits[i, i] = 1e2 sampling_params = SamplingParams( temperature=1.0, n=random.randint(1, 10), seed=random.randint(0, 10000), ) sampler_output = _do_sample(batch_size, fake_logits, sampler, sampling_params, device) for i, sequence_output in enumerate(sampler_output): for nth_output in sequence_output.samples: assert nth_output.output_token == i @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_all_random_seed_deterministic(seed: int, device: str): set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) _, fake_logits, sampler = _prepare_test(batch_size) sampling_params = SamplingParams( temperature=1.0, n=random.randint(1, 10), seed=random.randint(0, 10000), ) first_sampler_output = _do_sample(batch_size, fake_logits, sampler, sampling_params, device) second_sampler_output = _do_sample(batch_size, fake_logits, sampler, sampling_params, device) assert first_sampler_output == second_sampler_output @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_all_beam(seed: int, device: str): set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) _, fake_logits, sampler = _prepare_test(batch_size) sampling_params = SamplingParams( temperature=0, best_of=2, use_beam_search=True, ) _do_sample(batch_size, fake_logits, sampler, sampling_params, device) # no assertion here as I am not sure how to determine whether # the outputs are expected - in other words, this just tests # whether there are no exceptions in the sampler # when handling an all-beam search case. @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_min_tokens_penalty(seed: int, device: str): seq_id_counter = Counter(start=random.randint(0, 100)) set_random_seed(seed) torch.set_default_device(device) def create_sampling_params(min_tokens, eos_token_id=0, *, stop_token_ids: Optional[List[int]] = None, prompt_logprobs: Optional[int] = None): sampling_params = SamplingParams( min_tokens=min_tokens, max_tokens=9999, # keep higher than max of min_tokens stop_token_ids=stop_token_ids, # requesting prompt_logprobs changes the structure of `logits` prompt_logprobs=prompt_logprobs, ) sampling_params.all_stop_token_ids.add(eos_token_id) return sampling_params def create_sequence_data(num_input=3, num_generated=0): seq_data = SequenceData( array(APHRODITE_TOKEN_ID_ARRAY_TYPE, random.choices(range(0, VOCAB_SIZE), k=num_input))) if num_generated > 0: seq_data.output_token_ids = random.choices(range(0, VOCAB_SIZE), k=num_generated) return seq_data def generate_test_case(): # generate multiple seq groups but limit total batch size batch_size = random.randint(1, 128) expected_penalization = [] sequence_metadata_list: List[SequenceGroupMetadata] = [] # 20% chance to generate seq group metadata list with all prompts is_prompt = random.random() < 0.2 while batch_size > 0: num_seqs = 1 if is_prompt else random.randint(1, batch_size) eos_token_id = random.randint(0, VOCAB_SIZE - 1) min_tokens = random.randint(0, 50) num_stop_tokens = random.randint(0, 8) if num_stop_tokens > 0: stop_token_ids = random.choices(range(0, VOCAB_SIZE - 1), k=num_stop_tokens) else: stop_token_ids = None sampling_params = create_sampling_params( min_tokens=min_tokens, eos_token_id=eos_token_id, stop_token_ids=stop_token_ids) seq_data: Dict[int, SequenceData] = {} seq_group_penalization: List[bool] = [] for _ in range(num_seqs): num_input = random.randint(1, 100) num_generated = 0 if is_prompt else random.randint(1, 100) seq_data[next(seq_id_counter)] = create_sequence_data( num_input=num_input, num_generated=num_generated) seq_group_penalization.append(num_generated < min_tokens) expected_penalization.extend(seq_group_penalization) sequence_metadata_list.append( SequenceGroupMetadata( request_id=f"test_{batch_size}", is_prompt=is_prompt, seq_data=seq_data, sampling_params=sampling_params, block_tables={}, )) batch_size -= num_seqs return { "expected_penalization": expected_penalization, "seq_group_metadata_list": sequence_metadata_list, } # define some explicit test cases for edge case behavior prompt_without_penalization = { "expected_penalization": [False], "seq_group_metadata_list": [ SequenceGroupMetadata( request_id="test_1", is_prompt=True, seq_data={ next(seq_id_counter): create_sequence_data(), }, sampling_params=create_sampling_params(0), block_tables={}, ), ] } prompt_with_penalization = { "expected_penalization": [True], "seq_group_metadata_list": [ SequenceGroupMetadata( request_id="test_1", is_prompt=True, seq_data={ next(seq_id_counter): create_sequence_data(), }, sampling_params=create_sampling_params(1), block_tables={}, ), ] } prompt_with_penalization_and_prompt_logprobs = { "expected_penalization": [False, False, True], "seq_group_metadata_list": [ SequenceGroupMetadata( request_id="test_1", is_prompt=True, seq_data={ next(seq_id_counter): create_sequence_data(num_input=3), }, sampling_params=create_sampling_params(1, prompt_logprobs=3), block_tables={}, ), ] } stop_penalizing_after_min_tokens = { "expected_penalization": [False], "seq_group_metadata_list": [ SequenceGroupMetadata( request_id="test_1", is_prompt=False, seq_data={ next(seq_id_counter): create_sequence_data(num_generated=1), }, sampling_params=create_sampling_params(1), block_tables={}, ) ] } stop_token_ids = [42, 99, 42, 0] # intentional duplication prompt_combination = { "expected_penalization": [False, True, False], "seq_group_metadata_list": [ SequenceGroupMetadata( request_id="test_2", is_prompt=True, seq_data={ next(seq_id_counter): create_sequence_data(num_input=2), }, sampling_params=create_sampling_params(1, prompt_logprobs=3), block_tables={}, ), SequenceGroupMetadata( request_id="test_3", is_prompt=True, seq_data={ next(seq_id_counter): create_sequence_data(), }, sampling_params=create_sampling_params( 0, stop_token_ids=stop_token_ids), block_tables={}, ) ] } stop_token_ids = [1, 999, 37, 37] # intentional duplication decode_combination = { "expected_penalization": [True, False, False, True, False], "seq_group_metadata_list": [ SequenceGroupMetadata( request_id="test_1", is_prompt=False, seq_data={ next(seq_id_counter): create_sequence_data(num_generated=1), next(seq_id_counter): create_sequence_data(num_generated=100), }, sampling_params=create_sampling_params( 2, stop_token_ids=stop_token_ids), block_tables={}, ), SequenceGroupMetadata( request_id="test_2", is_prompt=False, seq_data={ next(seq_id_counter): create_sequence_data(num_generated=20), next(seq_id_counter): create_sequence_data(num_generated=1), next(seq_id_counter): create_sequence_data(num_generated=10), }, sampling_params=create_sampling_params( 10, prompt_logprobs=5, stop_token_ids=stop_token_ids), block_tables={}, ), ] } if seed == 0: test_cases = [ prompt_without_penalization, prompt_with_penalization, prompt_with_penalization_and_prompt_logprobs, stop_penalizing_after_min_tokens, prompt_combination, decode_combination, ] else: test_cases = [generate_test_case()] def run_test_case(*, expected_penalization: List[bool], seq_group_metadata_list: List[SequenceGroupMetadata]): assert expected_penalization, \ "Invalid test case, need expected_penalization" assert seq_group_metadata_list, \ "Invalid test case, need seq_group_metadata_list" batch_size = 0 seq_lens: List[int] = [] sampling_params_per_row: List[SamplingParams] = [] for sgm in seq_group_metadata_list: sampling_params = sgm.sampling_params num_rows = len(sgm.seq_data) if sgm.is_prompt: # a prompt seq_group has only one sequence seq_data = next(iter(sgm.seq_data.values())) prompt_len = seq_data.get_prompt_len() seq_lens.append(prompt_len) if sgm.sampling_params.prompt_logprobs: # with prompt_logprobs each token in the prompt has a row in # logits num_rows = prompt_len batch_size += num_rows sampling_params_per_row.extend( itertools.repeat(sampling_params, num_rows)) assert len( expected_penalization ) == batch_size, \ ("Invalid test case, expected_penalization does not match computed" "batch size") _, fake_logits, sampler = _prepare_test(batch_size) sampling_metadata = SamplingMetadata.prepare( seq_group_metadata_list, seq_lens=seq_lens if seq_lens else None, query_lens=seq_lens if seq_lens else None, device=device, pin_memory=is_pin_memory_available()) # the logits tensor is modified in-place by the sampler _ = sampler(logits=fake_logits, sampling_metadata=sampling_metadata) for logits_idx, (should_penalize, sampling_params) in enumerate( zip(expected_penalization, sampling_params_per_row)): tokens_to_check = sampling_params.all_stop_token_ids if should_penalize: for token_id in tokens_to_check: assert fake_logits[logits_idx, token_id] == -float( 'inf' ), f"Expected token {token_id} for logits row {logits_idx}" " to be penalized" # no other tokens should be set to -inf assert torch.count_nonzero( fake_logits[logits_idx, :] == -float('inf')) == len( tokens_to_check ), f"Expected only {len(tokens_to_check)} to be penalized" else: # no tokens should be set to -inf assert torch.count_nonzero( fake_logits[logits_idx, :] == -float('inf')) == 0, "No tokens should have been penalized" for test_case in test_cases: run_test_case(**test_case) @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_mixed(seed: int, device: str): set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) input_tensor, fake_logits, sampler = _prepare_test(batch_size) seq_group_metadata_list: List[SequenceGroupMetadata] = [] expected_tokens: List[Optional[List[int]]] = [] seq_lens: List[int] = [] for i in range(batch_size): expected: Optional[List[int]] = None sampling_type = random.randint(0, 3) if sampling_type == 0: sampling_params = SamplingParams(temperature=0) expected = [int(torch.argmax(fake_logits[i], dim=-1).item())] elif sampling_type in (1, 2): n = random.randint(1, 10) sampling_params = SamplingParams( temperature=random.random() + 0.1, top_p=min(random.random() + 0.1, 1), top_k=random.randint(0, 10) or -1, n=n, presence_penalty=random.randint(0, 1), ) if sampling_type == 2: sampling_params.seed = random.randint(0, 10000) else: for idx in range(n): fake_logits[i, i + idx] = 1e2 expected = list(range(i, i + n)) else: sampling_params = SamplingParams(temperature=0, use_beam_search=True, best_of=2) expected_tokens.append(expected) seq_group_metadata_list.append( SequenceGroupMetadata( request_id=f"test_{i}", is_prompt=True, seq_data={ 0: SequenceData(array( APHRODITE_TOKEN_ID_ARRAY_TYPE, [1, 2, 3])) }, sampling_params=sampling_params, block_tables={0: [1]}, )) seq_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len()) generators: Dict[str, torch.Generator] = {} def test_sampling(): sampling_metadata = SamplingMetadata.prepare( seq_group_metadata_list, seq_lens, query_lens=seq_lens, device=device, pin_memory=is_pin_memory_available(), generators=generators) sampler_output = sampler(logits=fake_logits, sampling_metadata=sampling_metadata) for i, (sequence_output, metadata) in enumerate( zip(sampler_output, seq_group_metadata_list)): if metadata.sampling_params.use_beam_search: continue if (metadata.sampling_params.seed is not None and expected_tokens[i] is None): # Record seeded random result to compare with results of # second invocation expected_tokens[i] = [ nth_output.output_token for nth_output in sequence_output.samples ] continue expected_tokens_item = expected_tokens[i] assert expected_tokens_item is not None for n, nth_output in enumerate(sequence_output.samples): if (metadata.sampling_params.temperature == 0 or metadata.sampling_params.seed is not None): # Ensure exact matches for greedy or random with seed assert nth_output.output_token == expected_tokens_item[n] else: # For non-seeded random check that one of the high-logit # tokens were chosen assert nth_output.output_token in expected_tokens_item # Test batch test_sampling() # Shuffle the batch and resample target_index = list(range(batch_size)) for list_to_shuffle in (target_index, seq_group_metadata_list, expected_tokens, seq_lens): random.Random(seed).shuffle(list_to_shuffle) target_index = torch.tensor(target_index) input_tensor.data = input_tensor.index_select(0, target_index) fake_logits.data = fake_logits.index_select(0, target_index) # This time, results of seeded random samples will be compared with # the corresponding sample in the pre-shuffled batch test_sampling() @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_top_k_top_p(seed: int, device: str): set_random_seed(seed) batch_size = random.randint(1, 256) top_k = random.randint(100, 500) top_p = random.random() * 0.1 vocab_size = 32000 input_tensor = torch.rand((batch_size, 1024), device=device, dtype=torch.float16) fake_logits = torch.normal(0, 5, size=(batch_size, vocab_size), device=input_tensor.device, dtype=input_tensor.dtype) sampler = MockLogitsSampler(fake_logits) generation_model = GenerationMixin() generation_config = GenerationConfig(top_k=top_k, top_p=top_p, do_sample=True) @dataclass class MockConfig: is_encoder_decoder: bool = False generation_model.config = MockConfig() # needed by the following method generation_model._prepare_special_tokens(generation_config, device=device) processors = generation_model._get_logits_processor(generation_config, None, None, None, [], device=device) assert len(processors) == 2 # top_p and top_k seq_group_metadata_list: List[SequenceGroupMetadata] = [] seq_lens: List[int] = [] for i in range(batch_size): seq_group_metadata_list.append( SequenceGroupMetadata( request_id=f"test_{i}", is_prompt=True, seq_data={ 0: SequenceData(array( APHRODITE_TOKEN_ID_ARRAY_TYPE, [1, 2, 3])) }, sampling_params=SamplingParams( temperature=1, top_k=top_k, top_p=top_p, ), block_tables={0: [1]}, )) seq_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len()) sampling_metadata = SamplingMetadata.prepare( seq_group_metadata_list, seq_lens, query_lens=seq_lens, device=device, pin_memory=is_pin_memory_available()) sample_probs = None def mock_sample(probs, *args, **kwargs): nonlocal sample_probs sample_probs = probs return ([[prob.topk(1, dim=-1).indices.tolist(), [0]] for prob in probs], None) with patch("aphrodite.modeling.layers.sampler._sample", mock_sample): sampler(logits=fake_logits, sampling_metadata=sampling_metadata) assert sample_probs is not None hf_probs = processors(torch.zeros_like(fake_logits), fake_logits.clone()) hf_probs = torch.softmax(hf_probs, dim=-1, dtype=torch.float) torch.testing.assert_close(hf_probs, sample_probs, rtol=0.0, atol=1e-5) assert torch.equal(hf_probs.eq(0), sample_probs.eq(0)) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_repetition_penalty_mixed(device: str): vocab_size = 8 def test_sampling_params(sampling_params: List[SamplingParams]): seq_group_metadata_list: List[SequenceGroupMetadata] = [] seq_lens: List[int] = [] for i in range(2): seq_group_metadata_list.append( SequenceGroupMetadata( request_id=f"test_{i}", is_prompt=True, seq_data={ 0: SequenceData(array(APHRODITE_TOKEN_ID_ARRAY_TYPE, [1, 2, 3])) }, sampling_params=sampling_params[i], block_tables={0: [1]}, )) seq_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len()) sampling_metadata = SamplingMetadata.prepare( seq_group_metadata_list, seq_lens, query_lens=seq_lens, device=device, pin_memory=is_pin_memory_available()) fake_logits = torch.full((2, vocab_size), 1e-2, device=device, dtype=torch.float16) fake_logits[:, 5] = 1.1e-2 fake_logits[:, 1] = 1.2e-2 sampler = MockLogitsSampler(fake_logits) sampler_output = sampler(logits=fake_logits, sampling_metadata=sampling_metadata) generated_tokens = [] for output in sampler_output: generated_tokens.append(output.samples[0].output_token) return generated_tokens # one configuration is greedy with repetition_penalty sampling_params_rep = SamplingParams( temperature=0.0, repetition_penalty=2.0, ) # other configuration is sampling w/o repetition_penalty sampling_params_sample = SamplingParams( temperature=1.0, top_k=1, seed=42, ) tokens1 = test_sampling_params( [sampling_params_rep, sampling_params_sample]) tokens2 = test_sampling_params( [sampling_params_sample, sampling_params_rep]) assert tokens1[0] == tokens2[1] assert tokens1[1] == tokens2[0] @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_no_repeat_ngram(seed: int, device: str): """Test that no-repeat-ngram sampling behaves as expected.""" set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) _, fake_logits, sampler = _prepare_test(batch_size) test_sequences = { # Format: sequence: [tokens_that_should_be_blocked] (1, 2, 3): [3], # With ngram_size=2, should block 3 after [2] (4, 5, 4, 5): [4], # With ngram_size=2, should block 4 after [5] (6, 7, 8, 6, 7): [8], # With ngram_size=3, should block 8 after [6, 7] (1, 2, 3, 4, 1, 2): [3], # With ngram_size=4, should block 3 after [1, 2] # noqa: E501 } for input_seq, blocked_tokens in test_sequences.items(): for ngram_size in [2, 3, 4]: sampling_params = SamplingParams( temperature=1.0, no_repeat_ngram_size=ngram_size, seed=random.randint(0, 10000), ) sampler_output = _do_sample( 1, fake_logits[0:1].clone(), # Just use first row sampler, sampling_params, device ) if len(input_seq) >= ngram_size: # check if blocked tokens have -inf logits for token in blocked_tokens: assert sampler_output[0].samples[0].output_token != token, \ f"Token {token} should have been blocked by {ngram_size}-gram repetition prevention" # noqa: E501 # disabled sampling_params = SamplingParams( temperature=1.0, no_repeat_ngram_size=0, seed=random.randint(0, 10000), ) sampler_output = _do_sample( 1, fake_logits[0:1].clone(), sampler, sampling_params, device ) output_token = sampler_output[0].samples[0].output_token assert output_token is not None, "Should produce output token with ngram_size=0" # noqa: E501 # determinism sampling_params = SamplingParams( temperature=1.0, no_repeat_ngram_size=3, seed=random.randint(0, 10000), ) first_output = _do_sample(batch_size, fake_logits.clone(), sampler, sampling_params, device) second_output = _do_sample(batch_size, fake_logits.clone(), sampler, sampling_params, device) assert first_output == second_output, \ "No-repeat-ngram sampling is not deterministic with same seed" @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_nsigma(seed: int, device: str): """Test that top-nsigma sampling behaves as expected.""" set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) _, fake_logits, sampler = _prepare_test(batch_size) # Create a clear separation in logits for testing high_logit_indices = {} # Store high logit indices for each batch for i in range(batch_size): # Set a few logits significantly higher than others num_high_logits = random.randint(1, 5) high_indices = random.sample(range(fake_logits.size(1)), num_high_logits) high_logit_indices[i] = set(high_indices) # Store for verification for idx in high_indices: fake_logits[i, idx] = 10.0 # Clearly above the mean # Test with different nsigma values for nsigma in [1.5, 2.0, 3.0]: sampling_params = SamplingParams( temperature=1.0, nsigma=nsigma, seed=random.randint(0, 10000), ) sampler_output = _do_sample(batch_size, fake_logits.clone(), sampler, sampling_params, device) # Verify that sampling only selects from high logits for batch_idx, sequence_output in enumerate(sampler_output): for nth_output in sequence_output.samples: token_id = nth_output.output_token # The token should come from the high logits region assert token_id in high_logit_indices[batch_idx], \ f"Sampled token {token_id} for batch {batch_idx} was not in the high logit set" # noqa # Test determinism second_output = _do_sample(batch_size, fake_logits.clone(), sampler, sampling_params, device) assert sampler_output == second_output, \ "Top-nsigma sampling is not deterministic with same seed" @pytest.mark.parametrize("seed", RANDOM_SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_skew(seed: int, device: str): """Test that skew sampling behaves as expected.""" set_random_seed(seed) torch.set_default_device(device) batch_size = random.randint(1, 256) _, fake_logits, sampler = _prepare_test(batch_size) high_prob_tokens = {} for i in range(batch_size): # Make token i have a much higher logit in sequence i fake_logits[i, i] = 10.0 high_prob_tokens[i] = i test_cases = [ # (skew, expected_behavior) (2.0, "low"), # Strong bias away from high probability tokens (0.5, "subtle"), # Subtle bias away from high probability tokens (0.0, "neutral"), # No bias (regular sampling) ] for skew, expected_behavior in test_cases: sampling_params = SamplingParams( temperature=1.0, # neutral temperature skew=skew, seed=random.randint(0, 10000), # for determinism ) sampler_output = _do_sample(batch_size, fake_logits.clone(), sampler, sampling_params, device) for batch_idx, sequence_output in enumerate(sampler_output): token_id = sequence_output.samples[0].output_token if expected_behavior == "low": # strong skew should bias away from high probability tokens assert token_id != high_prob_tokens[batch_idx], \ f"With high skew {skew}, should not select high " \ f"probability token {high_prob_tokens[batch_idx]}" elif expected_behavior == "subtle": # we don't assert anything for subtle effect, # as it's probabilistic pass # determinism second_output = _do_sample(batch_size, fake_logits.clone(), sampler, sampling_params, device) assert sampler_output == second_output, \ f"Skew sampling with seed is not deterministic for skew={skew}" @pytest.mark.parametrize("device", CUDA_DEVICES) def test_sampler_include_gpu_probs_tensor(device: str): set_random_seed(42) torch.set_default_device(device) batch_size = random.randint(1, 256) _, fake_logits, sampler = _prepare_test(batch_size) sampler.include_gpu_probs_tensor = True sampler.should_modify_greedy_probs_inplace = False sampling_params = SamplingParams(temperature=0) mock_inplace = Mock() with patch( "aphrodite.modeling.layers.sampler._modify_greedy_probs_inplace", mock_inplace): sampler_output = _do_sample(batch_size, fake_logits, sampler, sampling_params, device) mock_inplace.assert_not_called() assert sampler_output.sampled_token_probs is not None assert sampler_output.logprobs is not None assert sampler_output.sampled_token_ids is not None