from typing import Any, Dict, List, Optional, Tuple import torch from torch.nn import Module from torch.nn.parameter import Parameter from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase from aphrodite.modeling.utils import set_weight_attrs from aphrodite.quantization.base_config import QuantizationConfig ACTIVATION_SCHEMES = ["none"] class Int8TpuConfig(QuantizationConfig): """Int8 Quantization Config class for TPU Backend.""" def __init__( self, activation_scheme: str = "none", ) -> None: if activation_scheme not in ACTIVATION_SCHEMES: raise ValueError( f"Unsupported activation scheme {activation_scheme}") self.activation_scheme = activation_scheme def get_name(self) -> str: return "tpu_int8" def get_supported_act_dtypes(self) -> List[torch.dtype]: return [torch.float16, torch.bfloat16] @classmethod def get_min_capability(cls) -> int: raise NotImplementedError( "This function should not be called with TPU Backend") @staticmethod def get_config_filenames() -> List[str]: return [] @classmethod def from_config(cls, config: Dict[str, Any]) -> "Int8TpuConfig": activation_scheme = cls.get_from_keys(config, ["activation_scheme"]) return cls(activation_scheme=activation_scheme) def get_quant_method(self, layer: Module, prefix: str) -> Optional["TPUInt8LinearMethod"]: if isinstance(layer, LinearBase): return TPUInt8LinearMethod(self) return None def get_scaled_act_names(self) -> List[str]: return [] class TPUInt8LinearMethod(LinearMethodBase): """Int8 Linear method for TPU Quant. """ def __init__(self, quant_config: Int8TpuConfig): self.quant_config = quant_config def create_weights(self, layer: Module, input_size_per_partition: int, output_partition_sizes: List[int], input_size: int, output_size: int, params_dtype: torch.dtype, **extra_weight_attrs): weight = Parameter(torch.empty(sum(output_partition_sizes), input_size_per_partition, dtype=params_dtype), requires_grad=False) layer.register_parameter("weight", weight) set_weight_attrs(weight, { **extra_weight_attrs, "input_dim": 1, "output_dim": 0, }) def _quantize_weight( self, weight: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: weight_dtype = weight.dtype weight = weight.cpu().to(torch.float32) n_bit = 8 eps = 1e-5 max_int = 2**(n_bit - 1) - 1 min_int = -(2**(n_bit - 1)) max_val = weight.abs().amax(dim=-1, keepdim=True) max_val = max_val.clamp(min=eps) qscale = max_val / max_int qweight = torch.clamp(torch.round(weight * (1.0 / qscale)), min_int, max_int).to(torch.int8) qscale = qscale.squeeze().to(weight_dtype) return qweight, qscale def process_weights_after_loading(self, layer: Module) -> None: device = layer.weight.device qweight, qscale = self._quantize_weight(layer.weight) qweight = qweight.to(device) qscale = qscale.to(device) layer.weight = Parameter(qweight, requires_grad=False) layer.scale = Parameter(qscale, requires_grad=False) def apply(self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: try: import torch_xla.experimental.xla_quantized_matmul # noqa: F401 except ImportError as err: raise ImportError( "Please install torch_xla by following the instructions at " "https://aphrodite.pygmalion.chat/pages/installation/installation-tpu.html " # noqa: E501 "to run Aphrodite on TPU.") from err weight = layer.weight scale = layer.scale out = torch.ops.xla.quantized_matmul(x, weight, scale) if bias is not None: out = out + bias return out