# coding=utf-8 # Adapted from # https://huggingface.co/xverse/XVERSE-7B/blob/main/modeling_xverse.py # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Xverse model compatible with HuggingFace weights.""" from typing import Any, Dict, Iterable, List, Optional, Tuple import torch from torch import nn from transformers import PretrainedConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig, LoRAConfig from aphrodite.common.sequence import IntermediateTensors, SamplerOutput from aphrodite.common.utils import progress_bar from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.modeling.layers.activation import SiluAndMul from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.models.interfaces import SupportsLoRA from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig class XverseMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config) self.down_proj = RowParallelLinear(intermediate_size, hidden_size, bias=False, quant_config=quant_config) if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): gate, _ = self.gate_up_proj(x) x = self.act_fn(gate) x, _ = self.down_proj(x) return x class XverseAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, max_position_embeddings: int = 8192, quant_config: Optional[QuantizationConfig] = None, bias: bool = False, cache_config: Optional[CacheConfig] = None, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads # partition the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=bias, quant_config=quant_config, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=bias, quant_config=quant_config, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.o_proj(attn_output) return output class XverseDecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.self_attn = XverseAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=getattr(config, "num_key_value_heads", config.num_attention_heads), rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, quant_config=quant_config, bias=getattr(config, "bias", False), cache_config=cache_config, ) self.mlp = XverseMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class XverseModel(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id lora_vocab = (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) if lora_config else 0 self.vocab_size = config.vocab_size + lora_vocab self.org_vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, ) self.layers = nn.ModuleList([ XverseDecoderLayer(config, cache_config, quant_config) for _ in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, kv_caches[i], attn_metadata, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class XverseForCausalLM(nn.Module, SupportsLoRA): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } # LoRA specific attributes supported_lora_modules = [ "qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens", "lm_head", ] embedding_modules = { "embed_tokens": "input_embeddings", "lm_head": "output_embeddings", } embedding_padding_modules = ["lm_head"] def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, ) -> None: super().__init__() self.config = config self.lora_config = lora_config self.quant_config = quant_config self.model = XverseModel(config, cache_config, quant_config) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) weights_list = list(weights) for name, loaded_weight in progress_bar(weights_list, desc="Loading modules..."): if ("rotary_emb.inv_freq" in name or "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name): continue for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)