# coding=utf-8 # adapted from https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/fuyu/modeling_fuyu.py # Copyright 2023 The vLLM team. # Copyright 2023 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Fuyu model.""" import math from typing import Iterable, List, Literal, Mapping, Optional, Tuple, TypedDict import torch import torch.nn as nn import torch.utils.checkpoint from PIL import Image from transformers import FuyuConfig, FuyuImageProcessor from aphrodite.attention import AttentionMetadata from aphrodite.common.config import CacheConfig, MultiModalConfig from aphrodite.common.sequence import (IntermediateTensors, SamplerOutput, SequenceData) from aphrodite.common.utils import progress_bar from aphrodite.inputs import INPUT_REGISTRY, InputContext, LLMInputs from aphrodite.modeling.layers.linear import ColumnParallelLinear from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.models.persimmon import PersimmonForCausalLM from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.multimodal import MULTIMODAL_REGISTRY from aphrodite.multimodal.base import MultiModalInputs from aphrodite.multimodal.image import (cached_get_image_processor, cached_get_tokenizer) from aphrodite.quantization.base_config import QuantizationConfig from .interfaces import SupportsMultiModal from .utils import merge_multimodal_embeddings # Cannot find the following 2 numbers from hf config. _IMAGE_TOKEN_ID = 71011 _NEWLINE_TOKEN_ID = 71019 MAX_IMAGE_FEATURE_SIZE_HEIGHT = 1080 MAX_IMAGE_FEATURE_SIZE_WIDTH = 1920 class FuyuImagePixelInputs(TypedDict): type: Literal["pixel_values"] data: torch.Tensor """ Shape: (batch_size, num_patches, patch_size_x * patch_size_y * num_channels) """ def _calculate_num_image_tokens( height: int, width: int, ) -> Tuple[int, int]: """ calculate number of image tokens needed for a given image size The expected Fuyu image prompts is in format: (image_token * ncols + newline_token) * nrows args: image_size: Tuple[int, int] - (width, height) of the image returns: ncols: int - number of image tokens in x direction nrows: int - number of image tokens in y direction """ ncol = math.ceil(width / 30) nrow = math.ceil(height / 30) return ncol, nrow def get_max_fuyu_image_feature_size(): return _calculate_num_image_tokens( height=MAX_IMAGE_FEATURE_SIZE_HEIGHT, width=MAX_IMAGE_FEATURE_SIZE_WIDTH, ) def get_max_fuyu_image_tokens(ctx: InputContext): ncol, nrow = get_max_fuyu_image_feature_size() return (ncol + 1) * nrow def dummy_seq_data_for_fuyu(ctx: InputContext, seq_len: int, num_images: int): ncol, nrow = get_max_fuyu_image_feature_size() image_feature_size = get_max_fuyu_image_tokens(ctx) image_token_ids = ([_IMAGE_TOKEN_ID] * ncol + [_NEWLINE_TOKEN_ID]) * nrow token_ids = image_token_ids * num_images token_ids += [0] * (seq_len - image_feature_size * num_images) return SequenceData(token_ids) def dummy_image_for_fuyu( num_images: int, *, image_width: int, image_height: int, ): image = Image.new("RGB", (image_width, image_height), color=0) return {"image": image if num_images == 1 else [image] * num_images} def dummy_data_for_fuyu(ctx: InputContext, seq_len: int, mm_counts: Mapping[str, int]): num_images = mm_counts["image"] seq_data = dummy_seq_data_for_fuyu(ctx, seq_len, num_images) mm_data = dummy_image_for_fuyu(num_images, image_width=MAX_IMAGE_FEATURE_SIZE_WIDTH, image_height=MAX_IMAGE_FEATURE_SIZE_HEIGHT) return seq_data, mm_data def _fuyu_image_preprocess(image_processor: FuyuImageProcessor, data: Image.Image): image_encoding = image_processor.preprocess(data, return_tensors="pt") batch_images = torch.stack([img[0] for img in image_encoding["images"] ]).unsqueeze(1) image_unpadded_heights = torch.tensor( image_encoding["image_unpadded_heights"]) image_unpadded_widths = torch.tensor( image_encoding["image_unpadded_widths"]) batch_size = len(image_encoding["images"]) image_present = torch.ones(batch_size, 1, 1) model_image_input = image_processor.preprocess_with_tokenizer_info( image_input=batch_images, image_present=image_present, image_unpadded_h=image_unpadded_heights, image_unpadded_w=image_unpadded_widths, image_placeholder_id=_IMAGE_TOKEN_ID, image_newline_id=_NEWLINE_TOKEN_ID, variable_sized=True, ) return model_image_input def input_processor_for_fuyu(ctx: InputContext, llm_inputs: LLMInputs): multi_modal_data = llm_inputs.get("multi_modal_data") if multi_modal_data is None or "image" not in multi_modal_data: return llm_inputs model_config = ctx.model_config image_data = multi_modal_data["image"] new_multi_modal_data = {} # process image data if isinstance(image_data, Image.Image): # Fuyu's image_processor can also finish token padding image_processor: FuyuImageProcessor = cached_get_image_processor( model_config.model) model_image_input = _fuyu_image_preprocess(image_processor, image_data) image_patches = torch.stack([ image_patch[0] for image_patch in model_image_input["image_patches"] ]) new_multi_modal_data["image"] = image_patches elif isinstance(image_data, torch.Tensor): raise NotImplementedError("Embeddings input is not supported yet") else: raise TypeError(f"Invalid image type: {type(image_data)}") # process prompts prompt = llm_inputs.get("prompt") prompt_token_ids = llm_inputs["prompt_token_ids"] tokenizer = cached_get_tokenizer(model_config.model) # dim0 is batch_size, dim1 is subseq_size which will always be 1 image_input_ids: List[List[ torch.Tensor]] = model_image_input["image_input_ids"] image_input_ids = image_input_ids[0][0].tolist() bos_token = tokenizer.encode("", add_special_tokens=False)[1:] boa_token = tokenizer.encode("\x04", add_special_tokens=False)[1:] new_prompt = prompt + "\x04" new_prompt_token_ids = image_input_ids + bos_token + prompt_token_ids[ 1:] + boa_token return LLMInputs(prompt=new_prompt, prompt_token_ids=new_prompt_token_ids, multi_modal_data=new_multi_modal_data) def input_mapper_for_fuyu(ctx: InputContext, data: object): model_config = ctx.model_config if isinstance(data, Image.Image): # Fuyu's image_processor can also finish token padding image_processor: FuyuImageProcessor = cached_get_image_processor( model_config.model) model_image_input = _fuyu_image_preprocess(image_processor, data) data = torch.stack([ image_patch[0] for image_patch in model_image_input["image_patches"] ]) # image has been processed with prompt in input processor return MultiModalInputs({"image_patches": data}) @MULTIMODAL_REGISTRY.register_image_input_mapper(input_mapper_for_fuyu) @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_fuyu_image_tokens) @INPUT_REGISTRY.register_dummy_data(dummy_data_for_fuyu) @INPUT_REGISTRY.register_input_processor(input_processor_for_fuyu) class FuyuForCausalLM(nn.Module, SupportsMultiModal): def __init__(self, config: FuyuConfig, multimodal_config: MultiModalConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None) -> None: super().__init__() self.config = config self.multimodal_config = multimodal_config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.image_token_id = _IMAGE_TOKEN_ID self.image_feature_size = config.patch_size**2 * config.num_channels self.vision_embed_tokens = ColumnParallelLinear( self.image_feature_size, config.hidden_size, quant_config=quant_config, ) self.language_model = PersimmonForCausalLM(config, cache_config=cache_config, quant_config=quant_config) def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[FuyuImagePixelInputs]: image_patches = kwargs.pop("image_patches", None) if isinstance(image_patches, torch.Tensor): expected_feature_size = self.image_feature_size if image_patches.size(-1) != expected_feature_size: raise ValueError( f"Expected image patches to have the last dimension of " f"{expected_feature_size}, got {image_patches.size(-1)}") image_patches = image_patches.to( self.vision_embed_tokens.weight.dtype) return FuyuImagePixelInputs(type="pixel_values", data=image_patches) return None def _process_image_input( self, image_input: FuyuImagePixelInputs) -> torch.Tensor: assert self.vision_embed_tokens is not None vision_embeddings, _ = self.vision_embed_tokens(image_input["data"]) return vision_embeddings def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, **kwargs: object, ): image_input = self._parse_and_validate_image_input(**kwargs) if image_input is not None: vision_embeddings = self._process_image_input(image_input) inputs_embeds = self.language_model.model.embed_tokens(input_ids) inputs_embeds = merge_multimodal_embeddings( input_ids, inputs_embeds, vision_embeddings, self.image_token_id) else: inputs_embeds = None hidden_states = self.language_model( input_ids=input_ids, positions=positions, kv_caches=kv_caches, attn_metadata=attn_metadata, inputs_embeds=inputs_embeds, ) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.language_model.logits_processor( self.language_model.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.language_model.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): params_dict = dict(self.named_parameters(remove_duplicate=False)) weights_list = list(weights) for name, loaded_weight in progress_bar(weights_list, desc="Loading modules..."): if "rotary_emb.inv_freq" in name: continue if ("rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name): # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue param = params_dict[name] if "query_key_value" in name: # copy from vllm/model_executor/models/bloom.py # NOTE: Fuyu's fused QKV's output_dim has the shape of # (num_heads * 3 * head_size), while the # required shape is (3 * num_heads * head_size). # Thus, we need weight conversion. output_dim = getattr(param, "output_dim", None) num_heads = self.config.num_attention_heads if output_dim is not None: loaded_weight_shape = loaded_weight.shape loaded_weight = loaded_weight.view( loaded_weight_shape[:output_dim] + (num_heads, 3, -1) + loaded_weight_shape[output_dim + 1:]) loaded_weight = loaded_weight.transpose( output_dim, output_dim + 1) loaded_weight = loaded_weight.reshape(loaded_weight_shape) weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)