# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Mixtral model.""" from typing import Iterable, List, Optional, Tuple import numpy as np import torch import torch.nn.functional as F from torch import nn from transformers import MixtralConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig from aphrodite.common.sequence import IntermediateTensors from aphrodite.distributed import (get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce) from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (QKVParallelLinear, ReplicatedLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig class MixtralMLP(nn.Module): def __init__( self, num_experts: int, hidden_size: int, intermediate_size: int, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.num_experts = num_experts self.ffn_dim = intermediate_size self.hidden_dim = hidden_size self.w1 = ReplicatedLinear(self.hidden_dim, self.ffn_dim, bias=False, quant_config=quant_config) self.w2 = ReplicatedLinear(self.ffn_dim, self.hidden_dim, bias=False, quant_config=quant_config) self.w3 = ReplicatedLinear(self.hidden_dim, self.ffn_dim, bias=False, quant_config=quant_config) # TODO: Use Aphrodite's SiluAndMul self.act_fn = nn.SiLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: w1_out, _ = self.w1(hidden_states) w1_out = self.act_fn(w1_out) w3_out, _ = self.w3(hidden_states) current_hidden_states = w1_out * w3_out current_hidden_states, _ = self.w2(current_hidden_states) return current_hidden_states class MixtralMoE(nn.Module): def __init__( self, config: MixtralConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.config = config self.rank = get_tensor_model_parallel_rank() self.tp_size = get_tensor_model_parallel_world_size() self.num_total_experts = config.num_local_experts self.top_k = config.num_experts_per_tok if self.tp_size > self.num_total_experts: raise ValueError( f"Tensor parallel size {self.tp_size} is greater than " f"the number of experts {self.num_total_experts}.") # Split experts equally between ranks self.expert_indicies = np.array_split(range( self.num_total_experts), self.tp_size)[self.rank].tolist() if not self.expert_indicies: raise ValueError( f"Rank {self.rank} has no experts assigned to it.") self.experts = nn.ModuleList([ MixtralMLP(self.num_total_experts, config.hidden_size, config.intermediate_size, quant_config=quant_config) if idx in self.expert_indicies else None for idx in range(self.num_total_experts) ]) self.gate = ReplicatedLinear(config.hidden_size, self.num_total_experts, bias=False, quant_config=None) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_tokens, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) final_hidden_states = None for expert_idx in self.expert_indicies: expert_layer = self.experts[expert_idx] expert_mask = (selected_experts == expert_idx) expert_weights = (routing_weights * expert_mask).sum(dim=-1, keepdim=True) current_hidden_states = expert_layer(hidden_states).mul_( expert_weights) if final_hidden_states is None: final_hidden_states = current_hidden_states else: final_hidden_states.add_(current_hidden_states) return tensor_model_parallel_all_reduce(final_hidden_states).view( num_tokens, hidden_dim) class MixtralAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, max_position: int = 4096 * 32, rope_theta: float = 10000, quant_config: Optional[QuantizationConfig] = None, cache_config: Optional[CacheConfig] = None, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position, base=int(self.rope_theta), is_neox_style=True, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.o_proj(attn_output) return output class MixtralDecoderLayer(nn.Module): def __init__( self, config: MixtralConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size # Requires transformers > 4.32.0 rope_theta = getattr(config, "rope_theta", 10000) self.self_attn = MixtralAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, max_position=config.max_position_embeddings, num_kv_heads=config.num_key_value_heads, rope_theta=rope_theta, cache_config=cache_config, quant_config=quant_config) self.block_sparse_moe = MixtralMoE(config=config, quant_config=quant_config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> torch.Tensor: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.block_sparse_moe(hidden_states) return hidden_states, residual class MixtralModel(nn.Module): def __init__( self, config: MixtralConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = nn.ModuleList([ MixtralDecoderLayer(config, cache_config, quant_config=quant_config) for _ in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer(positions, hidden_states, kv_caches[i], attn_metadata, residual) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class MixtralForCausalLM(nn.Module): fall_back_to_pt_during_load = False def __init__( self, config: MixtralConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = MixtralModel(config, cache_config, quant_config) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: Optional[torch.Tensor], sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Skip experts that are not assigned to this worker. if ("block_sparse_moe.experts." in name and name not in params_dict): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)